These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 2982603)
1. Sugar specificity and sugar-proton interaction for the hexose-proton-symport system of Chlorella. Komor E; Schobert C; Cho BH Eur J Biochem; 1985 Feb; 146(3):649-56. PubMed ID: 2982603 [TBL] [Abstract][Full Text] [Related]
2. The hexose-proton symport system of Chlorella vulgaris. Specificity, stoichiometry and energetics of sugar-induced proton uptake. Komor E; Tanner W Eur J Biochem; 1974 May; 44(1):219-23. PubMed ID: 4854863 [No Abstract] [Full Text] [Related]
3. Different proton-sugar stoichiometries for the uptake of glucose analogues by Chlorella vulgaris. Evidence for sugar-dependent proton uptake without concomitant sugar uptake by the proton-sugar symport system. Grüneberg A; Komor E Biochim Biophys Acta; 1976 Sep; 448(1):133-42. PubMed ID: 9152 [TBL] [Abstract][Full Text] [Related]
4. The hexose-proton cotransport system of chlorella. pH-dependent change in Km values and translocation constants of the uptake system. Komor E; Tanner W J Gen Physiol; 1974 Nov; 64(5):568-81. PubMed ID: 4443792 [TBL] [Abstract][Full Text] [Related]
6. Kinetic analysis of simultaneously occurring proton-sorbose symport and passive sorbose transport in Saccharomyces fragilis. van den Broek PJ; van Steveninck J Biochim Biophys Acta; 1980 Nov; 602(2):419-32. PubMed ID: 6252966 [TBL] [Abstract][Full Text] [Related]
7. Alteration of substrate affinities and specificities of the Chlorella Hexose/H+ symporters by mutations and construction of chimeras. Will A; Grassl R; Erdmenger J; Caspari T; Tanner W J Biol Chem; 1998 May; 273(19):11456-62. PubMed ID: 9565557 [TBL] [Abstract][Full Text] [Related]
8. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis. Gerós H; Cássio F; Leão C Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930 [TBL] [Abstract][Full Text] [Related]
9. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Barnett JE; Holman GD; Munday KA Biochem J; 1973 Feb; 131(2):211-21. PubMed ID: 4722437 [TBL] [Abstract][Full Text] [Related]
10. Purification of the Chlorella HUP1 hexose-proton symporter to homogeneity and its reconstitution in vitro. Caspari T; Robl I; Stolz J; Tanner W Plant J; 1996 Dec; 10(6):1045-53. PubMed ID: 9011086 [TBL] [Abstract][Full Text] [Related]
11. Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H+ symporter and cloning of a Co-induced galactose-H+ symporter. Stadler R; Wolf K; Hilgarth C; Tanner W; Sauer N Plant Physiol; 1995 Jan; 107(1):33-41. PubMed ID: 7870840 [TBL] [Abstract][Full Text] [Related]
12. Inhibitors of the proton-sucrose symport. Bush DR Arch Biochem Biophys; 1993 Dec; 307(2):355-60. PubMed ID: 8274022 [TBL] [Abstract][Full Text] [Related]
13. Cytochalasin B as a probe for the two hexose-transport systems in rat L6 myoblasts. Chen SR; Lo TC Biochem J; 1988 Apr; 251(1):63-72. PubMed ID: 3390161 [TBL] [Abstract][Full Text] [Related]
14. Hexose/H+ symporters in lower and higher plants. Caspari T; Will A; Opekarová M; Sauer N; Tanner W J Exp Biol; 1994 Nov; 196():483-91. PubMed ID: 7823042 [TBL] [Abstract][Full Text] [Related]
15. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Schulz A; Beyhl D; Marten I; Wormit A; Neuhaus E; Poschet G; Büttner M; Schneider S; Sauer N; Hedrich R Plant J; 2011 Oct; 68(1):129-36. PubMed ID: 21668536 [TBL] [Abstract][Full Text] [Related]
16. Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Höfer M; Misra PC Biochem J; 1978 Apr; 172(1):15-22. PubMed ID: 26338 [TBL] [Abstract][Full Text] [Related]
17. Active transport of charged substrates by a proton/sugar co-transport system. Amino-sugar uptake in the yeast Rhodotorula gracilis. Niemietz C; Hauer R; Höfer M Biochem J; 1981 Feb; 194(2):433-41. PubMed ID: 6272730 [TBL] [Abstract][Full Text] [Related]
18. Sugar transport in Coprinus cinereus. Moore D; Devadatham MS Biochim Biophys Acta; 1979 Feb; 550(3):515-26. PubMed ID: 33708 [TBL] [Abstract][Full Text] [Related]
19. The mechanism of sugar uptake by sugarcane suspension cells. Komor E; Thom M; Maretzki A Planta; 1981 Oct; 153(2):181-92. PubMed ID: 24276769 [TBL] [Abstract][Full Text] [Related]
20. The HUP1 gene product of Chlorella kessleri: H+/glucose symport studied in vitro. Opekarová M; Caspari T; Tanner W Biochim Biophys Acta; 1994 Aug; 1194(1):149-54. PubMed ID: 8075129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]