BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2982603)

  • 1. Sugar specificity and sugar-proton interaction for the hexose-proton-symport system of Chlorella.
    Komor E; Schobert C; Cho BH
    Eur J Biochem; 1985 Feb; 146(3):649-56. PubMed ID: 2982603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hexose-proton symport system of Chlorella vulgaris. Specificity, stoichiometry and energetics of sugar-induced proton uptake.
    Komor E; Tanner W
    Eur J Biochem; 1974 May; 44(1):219-23. PubMed ID: 4854863
    [No Abstract]   [Full Text] [Related]  

  • 3. Different proton-sugar stoichiometries for the uptake of glucose analogues by Chlorella vulgaris. Evidence for sugar-dependent proton uptake without concomitant sugar uptake by the proton-sugar symport system.
    Grüneberg A; Komor E
    Biochim Biophys Acta; 1976 Sep; 448(1):133-42. PubMed ID: 9152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hexose-proton cotransport system of chlorella. pH-dependent change in Km values and translocation constants of the uptake system.
    Komor E; Tanner W
    J Gen Physiol; 1974 Nov; 64(5):568-81. PubMed ID: 4443792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active renal hexose transport. Structural requirements.
    Kleinzeller A; McAvoy EM; McKibbin RD
    Biochim Biophys Acta; 1980 Aug; 600(2):513-29. PubMed ID: 7407126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis of simultaneously occurring proton-sorbose symport and passive sorbose transport in Saccharomyces fragilis.
    van den Broek PJ; van Steveninck J
    Biochim Biophys Acta; 1980 Nov; 602(2):419-32. PubMed ID: 6252966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of substrate affinities and specificities of the Chlorella Hexose/H+ symporters by mutations and construction of chimeras.
    Will A; Grassl R; Erdmenger J; Caspari T; Tanner W
    J Biol Chem; 1998 May; 273(19):11456-62. PubMed ID: 9565557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural requirements for binding to the sugar-transport system of the human erythrocyte.
    Barnett JE; Holman GD; Munday KA
    Biochem J; 1973 Feb; 131(2):211-21. PubMed ID: 4722437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of the Chlorella HUP1 hexose-proton symporter to homogeneity and its reconstitution in vitro.
    Caspari T; Robl I; Stolz J; Tanner W
    Plant J; 1996 Dec; 10(6):1045-53. PubMed ID: 9011086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H+ symporter and cloning of a Co-induced galactose-H+ symporter.
    Stadler R; Wolf K; Hilgarth C; Tanner W; Sauer N
    Plant Physiol; 1995 Jan; 107(1):33-41. PubMed ID: 7870840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitors of the proton-sucrose symport.
    Bush DR
    Arch Biochem Biophys; 1993 Dec; 307(2):355-60. PubMed ID: 8274022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochalasin B as a probe for the two hexose-transport systems in rat L6 myoblasts.
    Chen SR; Lo TC
    Biochem J; 1988 Apr; 251(1):63-72. PubMed ID: 3390161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexose/H+ symporters in lower and higher plants.
    Caspari T; Will A; Opekarová M; Sauer N; Tanner W
    J Exp Biol; 1994 Nov; 196():483-91. PubMed ID: 7823042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2.
    Schulz A; Beyhl D; Marten I; Wormit A; Neuhaus E; Poschet G; Büttner M; Schneider S; Sauer N; Hedrich R
    Plant J; 2011 Oct; 68(1):129-36. PubMed ID: 21668536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis).
    Höfer M; Misra PC
    Biochem J; 1978 Apr; 172(1):15-22. PubMed ID: 26338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active transport of charged substrates by a proton/sugar co-transport system. Amino-sugar uptake in the yeast Rhodotorula gracilis.
    Niemietz C; Hauer R; Höfer M
    Biochem J; 1981 Feb; 194(2):433-41. PubMed ID: 6272730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar transport in Coprinus cinereus.
    Moore D; Devadatham MS
    Biochim Biophys Acta; 1979 Feb; 550(3):515-26. PubMed ID: 33708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of sugar uptake by sugarcane suspension cells.
    Komor E; Thom M; Maretzki A
    Planta; 1981 Oct; 153(2):181-92. PubMed ID: 24276769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The HUP1 gene product of Chlorella kessleri: H+/glucose symport studied in vitro.
    Opekarová M; Caspari T; Tanner W
    Biochim Biophys Acta; 1994 Aug; 1194(1):149-54. PubMed ID: 8075129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.