BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2982663)

  • 1. Partial uncoupling, or inhibition of electron transport rate, have equivalent effects on the relationship between the rate of ATP synthesis and proton-motive force in submitochondrial particles.
    Catia Sorgato M; Lippe G; Seren S; Ferguson SJ
    FEBS Lett; 1985 Feb; 181(2):323-7. PubMed ID: 2982663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rate of ATP synthesis by submitochondrial particles can be independent of the magnitude of the protonmotive force.
    Sorgato MC; Branca D; Ferguson SJ
    Biochem J; 1980 Jun; 188(3):945-8. PubMed ID: 6258563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current-voltage relationships for proton flow through the F0 sector of the ATP-synthase, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or leak pathways in submitochondrial particles.
    Seren S; Caporin G; Galiazzo F; Lippe G; Ferguson SJ; Sorgato MC
    Eur J Biochem; 1985 Oct; 152(2):373-9. PubMed ID: 2865136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Sorgato MC; Ferguson SJ; Kell DB; John P
    Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between the effects of redox potential, alpha-thenoyltrifluoroacetone and malonate on O(2) and H2O2 generation by submitochondrial particles in the presence of succinate and antimycin.
    Ksenzenko M; Konstantinov AA; Khomutov GB; Tikhonov AN; Ruuge EK
    FEBS Lett; 1984 Sep; 175(1):105-8. PubMed ID: 6090204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable proton conductance of submitochondrial particles.
    Sorgato MC; Ferguson SJ
    Biochemistry; 1979 Dec; 18(25):5737-42. PubMed ID: 42433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrogenic nature of ADP/ATP transport in inside-out submitochondrial particles.
    Villiers C; Michejda JW; Block M; Lauquin GJ; Vignais PV
    Biochim Biophys Acta; 1979 Apr; 546(1):157-70. PubMed ID: 36139
    [No Abstract]   [Full Text] [Related]  

  • 9. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles.
    Scholes TA; Hinkle PC
    Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling of oxidative phosphorylation: different effects of lipophilic weak acids and electrogenic ionophores on the kinetics of ATP synthesis.
    Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1989 May; 28(10):4367-74. PubMed ID: 2475167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-induced modulation of the kinetics of oxidative phosphorylation and reverse electron transfer.
    Hekman C; Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1988 Sep; 27(19):7559-65. PubMed ID: 2905168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactive to active transitions of the mitochondrial ATPase complex as controlled by the ATPase inhibitor.
    Gómez-Puyou A; de Gómez-Puyou MT; Ernster L
    Biochim Biophys Acta; 1979 Aug; 547(2):252-7. PubMed ID: 157162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Pentachlorophenol inhibition of succinate oxidation by the respiratory chain in submitochondrial particles from the bovine heart].
    Afanas'eva EV; Kostyrko VA
    Biokhimiia; 1986 May; 51(5):823-9. PubMed ID: 3708023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free fatty acids decouple oxidative phosphorylation by dissipating intramembranal protons without inhibiting ATP synthesis driven by the proton electrochemical gradient.
    Rottenberg H; Steiner-Mordoch S
    FEBS Lett; 1986 Jul; 202(2):314-8. PubMed ID: 2873057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of quinone pools in electron transport.
    Ragan CI; Cottingham IR
    Biochim Biophys Acta; 1985 Apr; 811(1):13-31. PubMed ID: 3986195
    [No Abstract]   [Full Text] [Related]  

  • 16. THe proton-per-electron stoicheiometry of 'site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5.
    de Jonge PC; Westerhoff HV
    Biochem J; 1982 May; 204(2):515-23. PubMed ID: 6288021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-force relationships during energy transfer between mitochondrial proton pumps.
    Petronilli V; Persson B; Zoratti M; Rydström J; Azzone GF
    Biochim Biophys Acta; 1991 Jun; 1058(2):297-303. PubMed ID: 1646634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: theory, computer modeling and experiments.
    Petronilli V; Azzone GF; Pietrobon D
    Biochim Biophys Acta; 1988 Mar; 932(3):306-24. PubMed ID: 2450579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. -->H+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles.
    Galkin AS; Grivennikova VG; Vinogradov AD
    FEBS Lett; 1999 May; 451(2):157-61. PubMed ID: 10371157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unisite and multisite ATP hydrolysis and synthesis by bovine submitochondrial particles.
    Hatefi Y; Matsuno-Yagi A
    Ann N Y Acad Sci; 1992 Nov; 671():377-84; discussion 385. PubMed ID: 1288334
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.