These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 2982797)

  • 21. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability.
    Yeliseev AA; Eraso JM; Kaplan S
    J Bacteriol; 1996 Oct; 178(20):5877-83. PubMed ID: 8830681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flash-induced proton release in Rhodopseudomonas sphaeroides spheroplasts.
    Arata H; Takenaka I; Nishimura M
    J Biochem; 1987 Jan; 101(1):261-5. PubMed ID: 3032925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the role of the light-harvesting B880 in the correct insertion of the reaction center of Rhodobacter capsulatus and Rhodobacter sphaeroides.
    Jackson WJ; Kiley PJ; Haith CE; Kaplan S; Prince RC
    FEBS Lett; 1987 May; 215(1):171-4. PubMed ID: 3552732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The proton motive force in isolated membrane vesicles and chromatophores from Rhodopseudomonas sphaeroides [proceedings].
    Michels PA; Konings WN
    Antonie Van Leeuwenhoek; 1978; 44(1):115. PubMed ID: 306800
    [No Abstract]   [Full Text] [Related]  

  • 25. Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 1. PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions.
    Barz WP; Francia F; Venturoli G; Melandri BA; Verméglio A; Oesterhelt D
    Biochemistry; 1995 Nov; 34(46):15235-47. PubMed ID: 7578139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: the symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26.
    Norris JR; Budil DE; Gast P; Chang CH; el-Kabbani O; Schiffer M
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4335-9. PubMed ID: 2543969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoresponses of the purple nonsulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides.
    Sackett MJ; Armitage JP; Sherwood EE; Pitta TP
    J Bacteriol; 1997 Nov; 179(21):6764-8. PubMed ID: 9352928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pumping capacity of bacterial reaction centers and backpressure regulation of energy transduction.
    van Rotterdam BJ; Westerhoff HV; Visschers RW; Bloch DA; Hellingwerf KJ; Jones MR; Crielaard W
    Eur J Biochem; 2001 Feb; 268(4):958-70. PubMed ID: 11179962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The respiratory electron transport system of heterotrophically-grown Rhodopseudomonas palustris.
    King MT; Drews G
    Arch Microbiol; 1975 Mar; 102(3):219-31. PubMed ID: 168826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cu2+ site in photosynthetic bacterial reaction centers from Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis.
    Utschig LM; Poluektov O; Schlesselman SL; Thurnauer MC; Tiede DM
    Biochemistry; 2001 May; 40(20):6132-41. PubMed ID: 11352751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localization and environmental regulation of MCP-like proteins in Rhodobacter sphaeroides.
    Harrison DM; Skidmore J; Armitage JP; Maddock JR
    Mol Microbiol; 1999 Feb; 31(3):885-92. PubMed ID: 10048031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accumulation and lethal effect of tritium (tritiated water) in Rhodopseudomonas spheroides. Under light-anaerobic and dark-aerobic conditions.
    Inomata T
    Radiat Environ Biophys; 1983; 21(4):281-94. PubMed ID: 6602996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of oxygen and light intensity on transcriptome expression in Rhodobacter sphaeroides 2.4.1. Redox active gene expression profile.
    Roh JH; Smith WE; Kaplan S
    J Biol Chem; 2004 Mar; 279(10):9146-55. PubMed ID: 14662761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata.
    Zannoni D; Melandri BA; Baccarini-Melandri A
    Biochim Biophys Acta; 1976 Mar; 423(3):413-30. PubMed ID: 177045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors determining electron-transfer rates in cytochrome c oxidase: investigation of the oxygen reaction in the R. sphaeroides enzyme.
    Adelroth P; Ek M; Brzezinski P
    Biochim Biophys Acta; 1998 Oct; 1367(1-3):107-17. PubMed ID: 9784618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron acceptor taxis and blue light effect on bacterial chemotaxis.
    Taylor BL; Miller JB; Warrick HM; Koshland DE
    J Bacteriol; 1979 Nov; 140(2):567-73. PubMed ID: 387740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata.
    McEwan AG; Greenfield AJ; Wetzstein HG; Jackson JB; Ferguson SJ
    J Bacteriol; 1985 Nov; 164(2):823-30. PubMed ID: 2997133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen taxis and proton motive force in Azospirillum brasilense.
    Zhulin IB; Bespalov VA; Johnson MS; Taylor BL
    J Bacteriol; 1996 Sep; 178(17):5199-204. PubMed ID: 8752338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron and proton transport in the ubiquinone cytochrome b-c2 oxidoreductase of Rhodopseudomonas sphaeroides. Patterns of binding and inhibition by antimycin.
    van den Berg WH; Prince RC; Bashford CL; Takamiya KI; Bonner WD; Dutton PL
    J Biol Chem; 1979 Sep; 254(17):8594-604. PubMed ID: 38253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.