These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2982869)

  • 1. Proton translocation by a native and subunit III-depleted cytochrome c oxidase reconstituted into phospholipid vesicles. Use of fluorescein-phosphatidylethanolamine as an intravesicular pH indicator.
    Thelen M; O'Shea PS; Petrone G; Azzi A
    J Biol Chem; 1985 Mar; 260(6):3626-31. PubMed ID: 2982869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton translocation by cytochrome oxidase vesicles catalyzing the peroxidatic oxidation of ferrocytochrome c.
    Miki T; Orii Y
    J Biol Chem; 1986 Mar; 261(9):3915-8. PubMed ID: 3005309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology of proteoliposomes containing fluorescein-phosphatidylethanolamine reconstituted with native and subunit III-depleted cytochrome c oxidase.
    Müller M; Azzi A
    J Bioenerg Biomembr; 1985 Dec; 17(6):385-93. PubMed ID: 3007450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase and subunit III-deficient enzyme: analysis of respiratory control and proton translocating activities.
    Wilson KS; Prochaska LJ
    Arch Biochem Biophys; 1990 Nov; 282(2):413-20. PubMed ID: 2173485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limited-turnover studies on proton translocation in reconstituted cytochrome c oxidase-containing vesicles.
    Casey RP; Chappell JB; Azzi A
    Biochem J; 1979 Jul; 182(1):149-56. PubMed ID: 40547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of electron-transfer and proton-translocation activities in bovine heart mitochondrial cytochrome c oxidase deficient in subunit III.
    Prochaska LJ; Reynolds KA
    Biochemistry; 1986 Feb; 25(4):781-7. PubMed ID: 3008812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights on the cytochrome c oxidase proton pump.
    Thelen M; O'Shea PS; Azzi A
    Biochem J; 1985 Apr; 227(1):163-7. PubMed ID: 2986602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton-translocating cytochrome c oxidase in artificial phospholipid vesicles.
    Krab K; Wikström M
    Biochim Biophys Acta; 1978 Oct; 504(1):200-14. PubMed ID: 30478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of redox-linked proton pumping activity of native and subunit III-depleted cytochrome c oxidase: a stopped-flow investigation.
    Sarti P; Jones MG; Antonini G; Malatesta F; Colosimo A; Wilson MT; Brunori M
    Proc Natl Acad Sci U S A; 1985 Aug; 82(15):4876-80. PubMed ID: 2410909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of subunit III removal on control of cytochrome c oxidase activity by pH.
    Gregory LC; Ferguson-Miller S
    Biochemistry; 1988 Aug; 27(17):6307-14. PubMed ID: 2851320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site.
    Capitanio G; Martino PL; Capitanio N; De Nitto E; Papa S
    Biochemistry; 2006 Feb; 45(6):1930-7. PubMed ID: 16460039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stopped-flow studies of cytochrome oxidase reconstituted into liposomes: proton pumping and control of activity.
    Brunori M; Antonini G; Colosimo A; Malatesta F; Sarti P; Jones MG; Wilson MT
    J Inorg Biochem; 1985; 23(3-4):373-9. PubMed ID: 2410570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline modification on proton translocation and membrane potential of reconstituted cytochrome-c oxidase support "proton slippage".
    Steverding D; Kadenbach B
    J Biol Chem; 1991 May; 266(13):8097-101. PubMed ID: 1850736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cytochrome c oxidase of Paracoccus denitrificans pumps protons in a reconstituted system.
    Solioz M; Carafoli E; Ludwig B
    J Biol Chem; 1982 Feb; 257(4):1579-82. PubMed ID: 6276393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific inhibition of redox-linked proton pump activity of cytochrome oxidase by oleate hydroperoxide and involvement of ferrocytochrome c in the catabolism of hydroperoxide.
    Yoshida S; Miki T; Orii Y; Takeshita M
    Biochem Int; 1990; 21(1):33-40. PubMed ID: 1696818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of energy conservation and transduction by mitochondrial cytochrome c oxidase.
    Wikström MK; Saari HT
    Biochim Biophys Acta; 1977 Nov; 462(2):347-61. PubMed ID: 201286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome c oxidase depleted of subunit III: proton-pumping, respiratory control, and pH dependence of the midpoint potential of cytochrome a.
    Thompson DA; Gregory L; Ferguson-Miller S
    J Inorg Biochem; 1985; 23(3-4):357-64. PubMed ID: 2410568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What is the essential proton-translocating molecular machinery in cytochrome oxidase?
    Wikström M; Casey RP
    J Inorg Biochem; 1985; 23(3-4):327-34. PubMed ID: 2410564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of cytochrome a in the proton pump of cytochrome-c oxidase.
    Mueller M; Azzi A
    Biochimie; 1986 Mar; 68(3):401-6. PubMed ID: 2427122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.