BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 2983024)

  • 1. Comparison of proteins involved with cyclic AMP metabolism between synaptic membrane and postsynaptic density preparations isolated from canine cerebral cortex and cerebellum.
    Aoki C; Carlin RK; Siekevitz P
    J Neurochem; 1985 Mar; 44(3):966-78. PubMed ID: 2983024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of adenylate cyclase and cyclic nucleotide phosphodiesterase in hamster isolated capillary preparations.
    Nemecek GM
    Biochim Biophys Acta; 1980 Mar; 628(2):125-35. PubMed ID: 6244001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the cyclic 3',5'-nucleotide phosphodiesterase actitivty associated with synaptosomal plasma membranes and synaptic junctions.
    Thérien HM; Mushynski WE
    Biochim Biophys Acta; 1979 Jun; 585(2):201-9. PubMed ID: 222347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic nucleotide content and granule cell degeneration in the developing cerebellum of staggerer mice.
    Spinka K; Farber DB; Lolley RN
    J Neurochem; 1980 Jun; 34(6):1531-4. PubMed ID: 6103918
    [No Abstract]   [Full Text] [Related]  

  • 5. Cyclic nucleotides in stroke and related cerebrovascular disorders.
    Palmer GC
    Life Sci; 1985 May; 36(21):1995-2006. PubMed ID: 2860549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolysis of cyclic AMP phosphodiesterase-II attenuates its ability to be inhibited by compounds which exert positive inotropic actions in cardiac tissue.
    Price B; Pyne NJ; Houslay MD
    Biochem Pharmacol; 1987 Dec; 36(23):4047-54. PubMed ID: 2825712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of cyclic nucleotide phosphodiesterase activity in rhesus fetal muscle.
    Beatty CH; Herrington PT; Bocek RM
    Biol Neonate; 1977; 32(1-2):33-42. PubMed ID: 198031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of a calmodulin in postsynaptic densities. III. Calmodulin-binding proteins of the postsynaptic density.
    Carlin RK; Grab DJ; Siekevitz P
    J Cell Biol; 1981 Jun; 89(3):449-55. PubMed ID: 6265467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function of calmodulin in postsynaptic densities. I. Presence of a calmodulin-activatable cyclic nucleotide phosphodiesterase activity.
    Grab DJ; Carlin RK; Siekevitz P
    J Cell Biol; 1981 Jun; 89(3):433-9. PubMed ID: 6265466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of several newer cardiotonic drugs on cardiac cyclic AMP metabolism.
    Ahn HS; Eardley D; Watkins R; Prioli N
    Biochem Pharmacol; 1986 Apr; 35(7):1113-21. PubMed ID: 2421728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple cyclic nucleotide phosphodiesterase activities from rat tissues and occurrence of a calcium-plus-magnesium-ion-dependent phosphodiesterase and its protein activator.
    Kakiuchi S; Yamazaki R; Teshima Y; Uenishi K; Miyamoto E
    Biochem J; 1975 Jan; 146(1):109-20. PubMed ID: 167710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities.
    Carlin RK; Grab DJ; Cohen RS; Siekevitz P
    J Cell Biol; 1980 Sep; 86(3):831-45. PubMed ID: 7410481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cyclic AMP and cyclic GMP in Morris hepatomas and liver.
    Hickie RA
    Adv Exp Med Biol; 1977 May 22-24; 92():451-88. PubMed ID: 24988
    [No Abstract]   [Full Text] [Related]  

  • 14. Biochemical regulation and physiological significance of cyclic nucleotides in the nervous system.
    Kebabian JW
    Adv Cyclic Nucleotide Res; 1977; 8():421-508. PubMed ID: 21551
    [No Abstract]   [Full Text] [Related]  

  • 15. Activation of rat cerebral cortical 3',5'-cyclic nucleotide phosphodiesterase activity by gangliosides.
    Davis CW; Daly JW
    Mol Pharmacol; 1980 Mar; 17(2):206-11. PubMed ID: 6248757
    [No Abstract]   [Full Text] [Related]  

  • 16. Properties of a protein kinase C activity in synaptic plasma membrane and postsynaptic density fractions isolated from canine cerebral cortex.
    Suzuki T; Siekevitz P
    J Neurochem; 1989 Dec; 53(6):1751-62. PubMed ID: 2509635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and properties of protein kinase and protein phosphatase activities in synaptosomal plasma membranes and synaptic junctions.
    Thérien HM; Mushynski WE
    Biochim Biophys Acta; 1979 Jun; 585(2):188-200. PubMed ID: 222346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors.
    Schoeffter P; Lugnier C; Demesy-Waeldele F; Stoclet JC
    Biochem Pharmacol; 1987 Nov; 36(22):3965-72. PubMed ID: 2825708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of cell-free brain cyclic nucleotide phosphodiesterase activities to cyclic AMP decay in intact brain slices.
    Whalin ME; Garrett RL; Thompson WJ; Strada SJ
    Second Messengers Phosphoproteins; 1988-1989; 12(5-6):311-25. PubMed ID: 2856115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolution of soluble cyclic nucleotide phosphodiesterase isoenzymes, from liver and hepatocytes, identifies a novel IBMX-insensitive form.
    Lavan BE; Lakey T; Houslay MD
    Biochem Pharmacol; 1989 Nov; 38(22):4123-36. PubMed ID: 2480793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.