These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 2983040)
21. Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide-stimulated cyclic AMP synthesis in rat cerebral cortical slices: interaction with noradrenaline, adrenaline, and forskolin. Nowak JZ; Kuba K J Mol Neurosci; 2002; 18(1-2):47-52. PubMed ID: 11931349 [TBL] [Abstract][Full Text] [Related]
22. Activation of cyclic AMP-generating systems in brain membranes and slices by the diterpene forskolin: augmentation of receptor-mediated responses. Daly JW; Padgett W; Seamon KB J Neurochem; 1982 Feb; 38(2):532-44. PubMed ID: 6125572 [TBL] [Abstract][Full Text] [Related]
23. A procedure for measuring alpha 2-adrenergic receptor-mediated inhibition of cyclic AMP accumulation in rat brain slices. Duman RS; Enna SJ Brain Res; 1986 Oct; 384(2):391-4. PubMed ID: 3022868 [TBL] [Abstract][Full Text] [Related]
24. Regulation by vasoactive intestinal peptide, histamine, somatostatin-14 and -28 of cyclic adenosine monophosphate levels in gastric glands isolated from the guinea pig fundus or antrum. Gespach C; Hui Bon Hoa D; Rosselin G Endocrinology; 1983 May; 112(5):1597-606. PubMed ID: 6131813 [TBL] [Abstract][Full Text] [Related]
25. Activators of cyclic adenosine 3':5'-monophosphate accumulation in rat hippocampal slices: action of vasoactive intestinal peptide (VIP). Etgen AM; Browning ET J Neurosci; 1983 Dec; 3(12):2487-93. PubMed ID: 6317811 [TBL] [Abstract][Full Text] [Related]
26. alpha 2-Adrenoceptors in the HT 29 human colon adenocarcinoma cell line: characterization with [3H]clonidine; effects on cyclic AMP accumulation. Bouscarel B; Cortinovis C; Carpene C; Murat JC; Paris H Eur J Pharmacol; 1985 Jan; 107(2):223-31. PubMed ID: 2984004 [TBL] [Abstract][Full Text] [Related]
27. VIP and noradrenaline act synergistically to increase cyclic AMP in cerebral cortex. Magistretti PJ; Schorderet M Nature; 1984 Mar 15-21; 308(5956):280-2. PubMed ID: 6322012 [TBL] [Abstract][Full Text] [Related]
28. GABAB receptor-mediated enhancement of vasoactive intestinal peptide-stimulated cyclic AMP production in slices of rat cerebral cortex. Watling KJ; Bristow DR J Neurochem; 1986 Jun; 46(6):1755-62. PubMed ID: 3009716 [TBL] [Abstract][Full Text] [Related]
29. H1 - and H2-receptor mediated responses to histamine on contractility and cyclic AMP of atrial and papillary muscles from guinea-pig hearts. Reinhardt D; Schmidt U; Brodde OE; Schümann HJ Agents Actions; 1977 Mar; 7(1):1-12. PubMed ID: 193383 [TBL] [Abstract][Full Text] [Related]
30. Characterization of alpha-1 adrenergic receptors linked to [3H]inositol metabolism in rat cerebral cortex. Minneman KP; Johnson RD J Pharmacol Exp Ther; 1984 Aug; 230(2):317-23. PubMed ID: 6146710 [TBL] [Abstract][Full Text] [Related]
31. Differences in the time-course of responses to alpha- and beta-adrenoceptor and of responses to H1- and H2-histamine receptor stimulation. Glover WE Circ Res; 1980 Jun; 46(6 Pt 2):I57-8. PubMed ID: 6247097 [No Abstract] [Full Text] [Related]
32. Vasoactive intestinal polypeptide acts synergistically with norepinephrine to depress spontaneous discharge rate in cerebral cortical neurons. Ferron A; Siggins GR; Bloom FE Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8810-2. PubMed ID: 3866254 [TBL] [Abstract][Full Text] [Related]
33. Histamine H1-agonist potentiation of adenosine-stimulated cyclic AMP accumulation in slices of guinea-pig cerebral cortex: comparison of response and binding parameters. Daum PR; Hill SJ; Young JM Br J Pharmacol; 1982 Oct; 77(2):347-57. PubMed ID: 6291688 [TBL] [Abstract][Full Text] [Related]
34. Histaminergic and catecholaminergic interactions in the central regulation of vasopressin and oxytocin secretion. Knigge U; Willems E; Kjaer A; Jørgensen H; Warberg J Endocrinology; 1999 Aug; 140(8):3713-9. PubMed ID: 10433231 [TBL] [Abstract][Full Text] [Related]
35. Differential involvement of the arachidonic acid cascade on the alpha 1-adrenergic potentiation of vasoactive intestinal peptide- versus beta-adrenergic-stimulated cyclic AMP and cyclic GMP accumulation in rat pinealocytes. Chik CL; Young I; Ho AK J Neurochem; 1991 Nov; 57(5):1534-9. PubMed ID: 1655977 [TBL] [Abstract][Full Text] [Related]
36. Adenosine 3',5'-monophosphate in guinea pig cerebral cortical slices: effects of alpha- and beta-adrenergic agents, histamine, serotonin and adenosine. Schultz J; Daly JW J Neurochem; 1973 Sep; 21(3):573-9. PubMed ID: 4147500 [No Abstract] [Full Text] [Related]
37. Ontogeny of adenosine 3',5'-monophosphate metabolism in guinea pig cerebral cortex. I. Development of responses to histamine, norepinephrine and adenosine. Shonk RF; Rall TW Mol Cell Biochem; 1987 Feb; 73(2):141-55. PubMed ID: 3031446 [TBL] [Abstract][Full Text] [Related]
38. Histamine H(2) -like receptors in chick cerebral cortex: effects on cyclic AMP synthesis and characterization by [(3) H]tiotidine binding. Zawilska JB; Woldan-Tambor A; Nowak JZ J Neurochem; 2002 Jun; 81(5):935-46. PubMed ID: 12065605 [TBL] [Abstract][Full Text] [Related]
39. Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex. Rosenberg PA; Li Y Brain Res; 1995 Sep; 692(1-2):227-32. PubMed ID: 8548307 [TBL] [Abstract][Full Text] [Related]
40. Comparison of the effects of biogenic amines on cyclic GMP and cycle AMP levels in mouse cerebellum in vitro. Ferrendelli JA; Kinscherf DA; Chang MM; Morgan JF Brain Res; 1975 Jan; 84(1):63-73. PubMed ID: 234274 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]