These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 2983675)
1. Inhibition of class C beta-lactamases by (1'R,6R)-6-(1'-hydroxy)benzylpenicillanic acid SS-dioxide. Knight GC; Waley SG Biochem J; 1985 Jan; 225(2):435-9. PubMed ID: 2983675 [TBL] [Abstract][Full Text] [Related]
2. 6-beta-Iodopenicillanate as a probe for the classification of beta-lactamases. De Meester F; Frère JM; Waley SG; Cartwright SJ; Virden R; Lindberg F Biochem J; 1986 Nov; 239(3):575-80. PubMed ID: 3030266 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of Sulbactam Hydrolysis by β-Lactamases, and Kinetics of β-Lactamase Inhibition by Sulbactam. Shapiro AB Antimicrob Agents Chemother; 2017 Dec; 61(12):. PubMed ID: 28971872 [TBL] [Abstract][Full Text] [Related]
4. 6-Acetylmethylenepenicillanic acid (Ro 15-1903), a potent beta-lactamase inhibitor. I. Inhibition of chromosomally and R-factor-mediated beta-lactamases. Arisawa M; Then RL J Antibiot (Tokyo); 1982 Nov; 35(11):1578-83. PubMed ID: 6298167 [TBL] [Abstract][Full Text] [Related]
5. Beta-lactamase inhibitors. The inhibition of serine beta-lactamases by specific boronic acids. Crompton IE; Cuthbert BK; Lowe G; Waley SG Biochem J; 1988 Apr; 251(2):453-9. PubMed ID: 3135799 [TBL] [Abstract][Full Text] [Related]
6. Spectrophotometric determination of inhibitory effects of CP-45899 on beta-lactamase with benzylpenicillin and nitrocefin. Yamabe S J Antimicrob Chemother; 1980 May; 6(3):420-1. PubMed ID: 6249784 [No Abstract] [Full Text] [Related]
7. A kinetic study on the interaction between tazobactam (a penicillanic acid sulphone derivative) and active-site serine beta-lactamases. Perilli M; Franceschini N; Bonfiglio G; Segatore B; Stefani S; Nicoletti G; Perez MM; Bianchi C; Zollo A; Amicosante G J Enzyme Inhib; 2000; 15(1):1-10. PubMed ID: 10850951 [TBL] [Abstract][Full Text] [Related]
8. The kinetics of non-stoichiometric bursts of beta-lactam hydrolysis catalysed by class C beta-lactamases. Page MG Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):295-304. PubMed ID: 8216231 [TBL] [Abstract][Full Text] [Related]
9. The pH-dependence of class B and class C beta-lactamases. Bicknell R; Knott-Hunziker V; Waley SG Biochem J; 1983 Jul; 213(1):61-6. PubMed ID: 6604522 [TBL] [Abstract][Full Text] [Related]
10. Inhibition kinetics of three R-factor-mediated beta-lactamases by a new beta-lactam sulfone (CP 45899). Labia R; Lelievre V; Peduzzi J Biochim Biophys Acta; 1980 Feb; 611(2):351-7. PubMed ID: 6243991 [TBL] [Abstract][Full Text] [Related]
11. Structure-based design of beta-lactamase inhibitors. 1. Synthesis and evaluation of bridged monobactams. Heinze-Krauss I; Angehrn P; Charnas RL; Gubernator K; Gutknecht EM; Hubschwerlen C; Kania M; Oefner C; Page MG; Sogabe S; Specklin JL; Winkler F J Med Chem; 1998 Oct; 41(21):3961-71. PubMed ID: 9767633 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of Bacillus cereus beta-lactamase I by 6 beta-bromopenicillanic acid: kinetics. Loosemore MJ; Cohen SA; Pratt RF Biochemistry; 1980 Aug; 19(17):3990-5. PubMed ID: 6250581 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of inhibition of the class A beta -lactamases PC1 and TEM-1 by tazobactam. Observation of reaction products by electrospray ionization mass spectrometry. Yang Y; Janota K; Tabei K; Huang N; Siegel MM; Lin YI; Rasmussen BA; Shlaes DM J Biol Chem; 2000 Sep; 275(35):26674-82. PubMed ID: 10837472 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of inactivation of TEM-1 beta-lactamase by 6-acetylmethylenepenicillanic acid. Arisawa M; Adam S Biochem J; 1983 May; 211(2):447-54. PubMed ID: 6307281 [TBL] [Abstract][Full Text] [Related]
15. Beta-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Christensen H; Martin MT; Waley SG Biochem J; 1990 Mar; 266(3):853-61. PubMed ID: 2158301 [TBL] [Abstract][Full Text] [Related]
16. Effect of side-chain amide thionation on turnover of beta-lactam substrates by beta-lactamases. Further evidence on the question of side-chain hydrogen-bonding in catalysis. Pratt RF; Krishnaraj R; Xu H Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):857-62. PubMed ID: 1417747 [TBL] [Abstract][Full Text] [Related]
17. Isolation of a Staphylococcus aureus beta-lactamase-dicloxacillin complex and kinetic studies on the reactivation of the enzyme. Hardy LW; Kirsch JF Arch Biochem Biophys; 1989 Jan; 268(1):338-48. PubMed ID: 2783544 [TBL] [Abstract][Full Text] [Related]
18. 6-beta-bromopenicillanic acid, a potent beta-lactamase inhibitor. Pratt RF; Loosemore MJ Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4145-9. PubMed ID: 212736 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of inactivation of beta-lactamase I by 6 beta-bromopenicillanic acid. Knott-Hunziker V; Orlek BS; Sammes PG; Waley SG Biochem J; 1980 Jun; 187(3):797-802. PubMed ID: 6331385 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of the thiol RTEM-1 beta-lactamase by 6-beta-bromopenicillanic acid. Identity of the primary active-site nucleophile. Knap AK; Pratt RF Biochem J; 1987 Oct; 247(1):29-33. PubMed ID: 2825657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]