These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29842815)

  • 1. Proton range shift analysis on brain pseudo-CT generated from T1 and T2 MR.
    Pileggi G; Speier C; Sharp GC; Izquierdo Garcia D; Catana C; Pursley J; Amato F; Seco J; Spadea MF
    Acta Oncol; 2018 Nov; 57(11):1521-1531. PubMed ID: 29842815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Convolution Neural Network (DCNN) Multiplane Approach to Synthetic CT Generation From MR images-Application in Brain Proton Therapy.
    Spadea MF; Pileggi G; Zaffino P; Salome P; Catana C; Izquierdo-Garcia D; Amato F; Seco J
    Int J Radiat Oncol Biol Phys; 2019 Nov; 105(3):495-503. PubMed ID: 31271823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard T1-weighted MR images.
    Demol B; Boydev C; Korhonen J; Reynaert N
    Med Phys; 2016 Dec; 43(12):6557. PubMed ID: 27908187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of MRI-only treatment planning for proton therapy in brain and prostate cancers: Dose calculation accuracy in substitute CT images.
    Koivula L; Wee L; Korhonen J
    Med Phys; 2016 Aug; 43(8):4634. PubMed ID: 27487880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward MR-only proton therapy planning for pediatric brain tumors: Synthesis of relative proton stopping power images with multiple sequence MRI and development of an online quality assurance tool.
    Wang C; Uh J; Patni T; Merchant T; Li Y; Hua CH; Acharya S
    Med Phys; 2022 Mar; 49(3):1559-1570. PubMed ID: 35075670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of MR-only proton dose calculations for prostate cancer radiotherapy using a commercial pseudo-CT generation method.
    Maspero M; van den Berg CAT; Landry G; Belka C; Parodi K; Seevinck PR; Raaymakers BW; Kurz C
    Phys Med Biol; 2017 Nov; 62(24):9159-9176. PubMed ID: 29076458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer.
    Korhonen J; Kapanen M; Keyriläinen J; Seppälä T; Tenhunen M
    Med Phys; 2014 Jan; 41(1):011704. PubMed ID: 24387496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue segmentation-based electron density mapping for MR-only radiotherapy treatment planning of brain using conventional T1-weighted MR images.
    Yu H; Oliver M; Leszczynski K; Lee Y; Karam I; Sahgal A
    J Appl Clin Med Phys; 2019 Aug; 20(8):11-20. PubMed ID: 31257709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of proton and photon dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR head scans.
    Neppl S; Landry G; Kurz C; Hansen DC; Hoyle B; Stöcklein S; Seidensticker M; Weller J; Belka C; Parodi K; Kamp F
    Acta Oncol; 2019 Oct; 58(10):1429-1434. PubMed ID: 31271093
    [No Abstract]   [Full Text] [Related]  

  • 10. T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning.
    Kapanen M; Tenhunen M
    Acta Oncol; 2013 Apr; 52(3):612-8. PubMed ID: 22712634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluence-modulated proton CT optimized with patient-specific dose and variance objectives for proton dose calculation.
    Dickmann J; Kamp F; Hillbrand M; Corradini S; Belka C; Schulte RW; Parodi K; Dedes G; Landry G
    Phys Med Biol; 2021 Mar; 66(6):064001. PubMed ID: 33545701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty-aware MR-based CT synthesis for robust proton therapy planning of brain tumour.
    Li X; Bellotti R; Meier G; Bachtiary B; Weber D; Lomax A; Buhmann J; Zhang Y
    Radiother Oncol; 2024 Feb; 191():110056. PubMed ID: 38104781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR-based synthetic CT image for intensity-modulated proton treatment planning of nasopharyngeal carcinoma patients.
    Chen S; Peng Y; Qin A; Liu Y; Zhao C; Deng X; Deraniyagala R; Stevens C; Ding X
    Acta Oncol; 2022 Nov; 61(11):1417-1424. PubMed ID: 36305424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero TE-based pseudo-CT image conversion in the head and its application in PET/MR attenuation correction and MR-guided radiation therapy planning.
    Wiesinger F; Bylund M; Yang J; Kaushik S; Shanbhag D; Ahn S; Jonsson JH; Lundman JA; Hope T; Nyholm T; Larson P; Cozzini C
    Magn Reson Med; 2018 Oct; 80(4):1440-1451. PubMed ID: 29457287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of synthetic CT data using patient specific daily MR image data and image registration.
    Kraus KM; Jäkel O; Niebuhr NI; Pfaffenberger A
    Phys Med Biol; 2017 Feb; 62(4):1358-1377. PubMed ID: 28114107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences.
    Dowling JA; Sun J; Pichler P; Rivest-Hénault D; Ghose S; Richardson H; Wratten C; Martin J; Arm J; Best L; Chandra SS; Fripp J; Menk FW; Greer PB
    Int J Radiat Oncol Biol Phys; 2015 Dec; 93(5):1144-53. PubMed ID: 26581150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times.
    Edmund JM; Kjer HM; Van Leemput K; Hansen RH; Andersen JA; Andreasen D
    Phys Med Biol; 2014 Dec; 59(23):7501-19. PubMed ID: 25393873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer.
    Christiansen RL; Jensen HR; Brink C
    Acta Oncol; 2017 Jun; 56(6):787-791. PubMed ID: 28464739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of Monte Carlo dropout-based uncertainty maps to evaluate deep learning-based synthetic CTs for adaptive proton therapy.
    Galapon AV; Thummerer A; Langendijk JA; Wagenaar D; Both S
    Med Phys; 2024 Apr; 51(4):2499-2509. PubMed ID: 37956266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of variability in target volume delineation for newly diagnosed glioblastoma: a multi-institutional study from the Korean Radiation Oncology Group.
    Wee CW; Sung W; Kang HC; Cho KH; Han TJ; Jeong BK; Jeong JU; Kim H; Kim IA; Kim JH; Kim SH; Kim S; Lee DS; Lee MY; Lim DH; Park HL; Suh CO; Yoon SM; Kim IH
    Radiat Oncol; 2015 Jul; 10():137. PubMed ID: 26134973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.