These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29842949)

  • 1. Evaluation of computational techniques for predicting non-synonymous single nucleotide variants pathogenicity.
    Hassan MS; Shaalan AA; Dessouky MI; Abdelnaiem AE; ElHefnawi M
    Genomics; 2019 Jul; 111(4):869-882. PubMed ID: 29842949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IMHOTEP-a composite score integrating popular tools for predicting the functional consequences of non-synonymous sequence variants.
    Knecht C; Mort M; Junge O; Cooper DN; Krawczak M; Caliebe A
    Nucleic Acids Res; 2017 Feb; 45(3):e13. PubMed ID: 28180317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the Performance of In silico Tools for PRRT2 Missense Variants.
    Sun H; Song W; Li B
    Comb Chem High Throughput Screen; 2024 Jun; ():. PubMed ID: 38910474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review study: Computational techniques for expecting the impact of non-synonymous single nucleotide variants in human diseases.
    Hassan MS; Shaalan AA; Dessouky MI; Abdelnaiem AE; ElHefnawi M
    Gene; 2019 Jan; 680():20-33. PubMed ID: 30240882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective judgment predicts disease-associated single nucleotide variants.
    Capriotti E; Altman RB; Bromberg Y
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S2. PubMed ID: 23819846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iFish: predicting the pathogenicity of human nonsynonymous variants using gene-specific/family-specific attributes and classifiers.
    Wang M; Wei L
    Sci Rep; 2016 Aug; 6():31321. PubMed ID: 27527004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations.
    Leong IU; Stuckey A; Lai D; Skinner JR; Love DR
    BMC Med Genet; 2015 May; 16():34. PubMed ID: 25967940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of 13 in silico pathogenicity methods on cancer-related variants.
    Yazar M; Ozbek P
    Comput Biol Med; 2022 Jun; 145():105434. PubMed ID: 35364305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PON-P2: prediction method for fast and reliable identification of harmful variants.
    Niroula A; Urolagin S; Vihinen M
    PLoS One; 2015; 10(2):e0117380. PubMed ID: 25647319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MutTMPredictor: Robust and accurate cascade XGBoost classifier for prediction of mutations in transmembrane proteins.
    Ge F; Zhu YH; Xu J; Muhammad A; Song J; Yu DJ
    Comput Struct Biotechnol J; 2021; 19():6400-6416. PubMed ID: 34938415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of mutation pathogenicity prediction tools on missense variants associated with 46,XY differences of sex development.
    Montenegro LR; LerĂ¡rio AM; Nishi MY; Jorge AAL; Mendonca BB
    Clinics (Sao Paulo); 2021; 76():e2052. PubMed ID: 33503178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KinMutRF: a random forest classifier of sequence variants in the human protein kinase superfamily.
    Pons T; Vazquez M; Matey-Hernandez ML; Brunak S; Valencia A; Izarzugaza JM
    BMC Genomics; 2016 Jun; 17 Suppl 2(Suppl 2):396. PubMed ID: 27357839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenicity prediction of non-synonymous single nucleotide variants in dilated cardiomyopathy.
    Mueller SC; Backes C; Haas J; ; Katus HA; Meder B; Meese E; Keller A
    Brief Bioinform; 2015 Sep; 16(5):769-79. PubMed ID: 25638801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies.
    Dong C; Wei P; Jian X; Gibbs R; Boerwinkle E; Wang K; Liu X
    Hum Mol Genet; 2015 Apr; 24(8):2125-37. PubMed ID: 25552646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of pathogenic single amino acid substitutions using molecular fragment descriptors.
    Zadorozhny A; Smirnov A; Filimonov D; Lagunin A
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37535750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Ensemble Approach to Predict the Pathogenicity of Synonymous Variants.
    Ranganathan Ganakammal S; Alexov E
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32967157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of in silico analysis in predicting the effect of non-synonymous variants in inherited steroid metabolic diseases.
    Chan AO
    Steroids; 2013 Jul; 78(7):726-30. PubMed ID: 23603282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations.
    Liu X; Jian X; Boerwinkle E
    Hum Mutat; 2013 Sep; 34(9):E2393-402. PubMed ID: 23843252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Evaluation of performance of five bioinformatics software for the prediction of missense mutations].
    Chen Q; Dai C; Zhang Q; Du J; Li W
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2016 Oct; 33(5):625-8. PubMed ID: 27577208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico analysis of nonsynonymous single nucleotide polymorphisms of the human adiponectin receptor 2 (ADIPOR2) gene.
    Solayman M; Saleh MA; Paul S; Khalil MI; Gan SH
    Comput Biol Chem; 2017 Jun; 68():175-185. PubMed ID: 28359874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.