These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 29842972)

  • 1. Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks.
    Raymond S; Maazouz Y; Montufar EB; Perez RA; González B; Konka J; Kaiser J; Ginebra MP
    Acta Biomater; 2018 Jul; 75():451-462. PubMed ID: 29842972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toughening 3D printed biomimetic hydroxyapatite scaffolds: Polycaprolactone-based self-hardening inks.
    Del-Mazo-Barbara L; Johansson L; Tampieri F; Ginebra MP
    Acta Biomater; 2024 Mar; 177():506-524. PubMed ID: 38360290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments.
    Konka J; Buxadera-Palomero J; Espanol M; Ginebra MP
    Acta Biomater; 2021 Oct; 134():744-759. PubMed ID: 34358699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment.
    Raymond Y; Bonany M; Lehmann C; Thorel E; Benítez R; Franch J; Espanol M; Solé-Martí X; Manzanares MC; Canal C; Ginebra MP
    Acta Biomater; 2021 Nov; 135():671-688. PubMed ID: 34496283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective production of multifunctional magnetic-sensitive biomaterial by an extrusion-based additive manufacturing technique.
    Rodrigues AFM; Torres PMC; Barros MJS; Presa R; Ribeiro N; Abrantes JCC; Belo JH; Amaral JS; Amaral VS; Bañobre-López M; Bettencourt A; Sousa A; Olhero SM
    Biomed Mater; 2020 Dec; 16(1):015011. PubMed ID: 32750692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks.
    Maazouz Y; Montufar EB; Guillem-Marti J; Fleps I; Öhman C; Persson C; Ginebra MP
    J Mater Chem B; 2014 Sep; 2(33):5378-5386. PubMed ID: 32261758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions.
    Lode A; Meissner K; Luo Y; Sonntag F; Glorius S; Nies B; Vater C; Despang F; Hanke T; Gelinsky M
    J Tissue Eng Regen Med; 2014 Sep; 8(9):682-93. PubMed ID: 22933381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D plotting of growth factor loaded calcium phosphate cement scaffolds.
    Akkineni AR; Luo Y; Schumacher M; Nies B; Lode A; Gelinsky M
    Acta Biomater; 2015 Nov; 27():264-274. PubMed ID: 26318366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro response of mesenchymal stem cells to biomimetic hydroxyapatite substrates: A new strategy to assess the effect of ion exchange.
    Sadowska JM; Guillem-Marti J; Espanol M; Stähli C; Döbelin N; Ginebra MP
    Acta Biomater; 2018 Aug; 76():319-332. PubMed ID: 29933107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure degradation and strength changes of sintered calcium phosphate bone scaffolds with different phase structures during simulated biodegradation in vitro.
    Stastny P; Sedlacek R; Suchy T; Lukasova V; Rampichova M; Trunec M
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():544-553. PubMed ID: 30948091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink.
    Ahlfeld T; Doberenz F; Kilian D; Vater C; Korn P; Lauer G; Lode A; Gelinsky M
    Biofabrication; 2018 Jul; 10(4):045002. PubMed ID: 30004388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds.
    Bertol LS; Schabbach R; Loureiro Dos Santos LA
    J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
    Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S
    J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects.
    Brennan MÁ; Monahan DS; Brulin B; Gallinetti S; Humbert P; Tringides C; Canal C; Ginebra MP; Layrolle P
    Acta Biomater; 2021 Nov; 135():689-704. PubMed ID: 34520883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes.
    Maazouz Y; Montufar EB; Malbert J; Espanol M; Ginebra MP
    Acta Biomater; 2017 Feb; 49():563-574. PubMed ID: 27872015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.