These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29842972)

  • 41. Improvement of calcium phosphate scaffold osteogenesis in vitro via combination of glutamate-modified BMP-2 peptides.
    Cao Q; He Z; Sun WQ; Fan G; Zhao J; Bao N; Ye T
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():412-418. PubMed ID: 30606550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration.
    Torres PMC; Ribeiro N; Nunes CMM; Rodrigues AFM; Sousa A; Olhero SM
    Biomater Adv; 2022 Mar; 134():112690. PubMed ID: 35581087
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties.
    Bagnol R; Sprecher C; Peroglio M; Chevalier J; Mahou R; Büchler P; Richards G; Eglin D
    Acta Biomater; 2021 Apr; 125():322-332. PubMed ID: 33631396
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A biocompatible thermoset polymer binder for Direct Ink Writing of porous titanium scaffolds for bone tissue engineering.
    Chen Y; Han P; Vandi LJ; Dehghan-Manshadi A; Humphry J; Kent D; Stefani I; Lee P; Heitzmann M; Cooper-White J; Dargusch M
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():160-165. PubMed ID: 30573237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering.
    Bastami F; Paknejad Z; Jafari M; Salehi M; Rezai Rad M; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():481-491. PubMed ID: 28024612
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of calcium phosphate 3D scaffolds for bone repair using magnetic levitational assembly.
    Parfenov VA; Mironov VA; Koudan EV; Nezhurina EK; Karalkin PA; Pereira FD; Petrov SV; Krokhmal AA; Aydemir T; Vakhrushev IV; Zobkov YV; Smirnov IV; Fedotov AY; Demirci U; Khesuani YD; Komlev VS
    Sci Rep; 2020 Mar; 10(1):4013. PubMed ID: 32132636
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGA Microspheres for Bone Repair.
    Li Y; Zhang Z; Zhang Z
    Cells Tissues Organs; 2018; 205(1):20-31. PubMed ID: 29393155
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells.
    Domingos M; Gloria A; Coelho J; Bartolo P; Ciurana J
    Proc Inst Mech Eng H; 2017 Jun; 231(6):555-564. PubMed ID: 28056713
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional plotted hydroxyapatite scaffolds with predefined architecture: comparison of stabilization by alginate cross-linking versus sintering.
    Kumar A; Akkineni AR; Basu B; Gelinsky M
    J Biomater Appl; 2016 Mar; 30(8):1168-81. PubMed ID: 26589296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique.
    Wilson CE; van Blitterswijk CA; Verbout AJ; Dhert WJ; de Bruijn JD
    J Mater Sci Mater Med; 2011 Jan; 22(1):97-105. PubMed ID: 21069558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells.
    Wang M; Cheng X; Zhu W; Holmes B; Keidar M; Zhang LG
    Tissue Eng Part A; 2014 Mar; 20(5-6):1060-71. PubMed ID: 24219622
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure.
    Vella JB; Trombetta RP; Hoffman MD; Inzana J; Awad H; Benoit DSW
    J Biomed Mater Res A; 2018 Mar; 106(3):663-672. PubMed ID: 29044984
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of calcium phosphate-zirconia scaffold and human endometrial adult stem cells for bone tissue engineering.
    Alizadeh A; Moztarzadeh F; Ostad SN; Azami M; Geramizadeh B; Hatam G; Bizari D; Tavangar SM; Vasei M; Ai J
    Artif Cells Nanomed Biotechnol; 2016; 44(1):66-73. PubMed ID: 24810360
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combined delivery of bone morphogenetic protein-2 and insulin-like growth factor-1 from nano-poly (γ-glutamic acid)/β-tricalcium phosphate-based calcium phosphate cement and its effect on bone regeneration in vitro.
    Shu X; Feng J; Feng J; Huang X; Li L; Shi Q
    J Biomater Appl; 2017 Nov; 32(5):547-560. PubMed ID: 29113568
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration.
    Gupta V; Lyne DV; Barragan M; Berkland CJ; Detamore MS
    J Mater Sci Mater Med; 2016 Jul; 27(7):121. PubMed ID: 27272903
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A facile two step heat treatment strategy for development of bioceramic scaffolds for hard tissue engineering applications.
    Farzin A; Hassan S; Ebrahimi-Barough S; Ai A; Hasanzadeh E; Goodarzi A; Ai J
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110009. PubMed ID: 31546356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.