These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29843050)

  • 41. Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates.
    Frank KL; Patel R
    Infect Immun; 2007 Oct; 75(10):4728-42. PubMed ID: 17635864
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exopolysaccharides of Agrobacterium tumefaciens.
    Matthysse AG
    Curr Top Microbiol Immunol; 2018; 418():111-141. PubMed ID: 29992358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extended-spectrum antibodies protective against carbapenemase-producing Enterobacteriaceae.
    Skurnik D; Roux D; Pons S; Guillard T; Lu X; Cywes-Bentley C; Pier GB
    J Antimicrob Chemother; 2016 Apr; 71(4):927-35. PubMed ID: 26747103
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Weaving of bacterial cellulose by the Bcs secretion systems.
    Abidi W; Torres-Sánchez L; Siroy A; Krasteva PV
    FEMS Microbiol Rev; 2022 Mar; 46(2):. PubMed ID: 34634120
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The TPR domain of PgaA is a multifunctional scaffold that binds PNAG and modulates PgaB-dependent polymer processing.
    Pfoh R; Subramanian AS; Huang J; Little DJ; Forman A; DiFrancesco BR; Balouchestani-Asli N; Kitova EN; Klassen JS; Pomès R; Nitz M; Howell PL
    PLoS Pathog; 2022 Aug; 18(8):e1010750. PubMed ID: 35930610
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions.
    Römling U; Galperin MY
    Trends Microbiol; 2015 Sep; 23(9):545-57. PubMed ID: 26077867
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway.
    Islam ST; Lam JS
    Can J Microbiol; 2014 Nov; 60(11):697-716. PubMed ID: 25358682
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability.
    Nilsson M; Chiang WC; Fazli M; Gjermansen M; Givskov M; Tolker-Nielsen T
    Environ Microbiol; 2011 May; 13(5):1357-69. PubMed ID: 21507178
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of biofilm formation in Pseudomonas and Burkholderia species.
    Fazli M; Almblad H; Rybtke ML; Givskov M; Eberl L; Tolker-Nielsen T
    Environ Microbiol; 2014 Jul; 16(7):1961-81. PubMed ID: 24592823
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exopolysaccharide quantification.
    Sadovskaya I
    Methods Mol Biol; 2014; 1149():347-57. PubMed ID: 24818919
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A major protein component of the Bacillus subtilis biofilm matrix.
    Branda SS; Chu F; Kearns DB; Losick R; Kolter R
    Mol Microbiol; 2006 Feb; 59(4):1229-38. PubMed ID: 16430696
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects.
    Arciola CR; Campoccia D; Ravaioli S; Montanaro L
    Front Cell Infect Microbiol; 2015; 5():7. PubMed ID: 25713785
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms.
    Wozniak DJ; Wyckoff TJ; Starkey M; Keyser R; Azadi P; O'Toole GA; Parsek MR
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7907-12. PubMed ID: 12810959
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assembly of Bacterial Capsular Polysaccharides and Exopolysaccharides.
    Whitfield C; Wear SS; Sande C
    Annu Rev Microbiol; 2020 Sep; 74():521-543. PubMed ID: 32680453
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation.
    Jackson KD; Starkey M; Kremer S; Parsek MR; Wozniak DJ
    J Bacteriol; 2004 Jul; 186(14):4466-75. PubMed ID: 15231778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exopolysaccharide-Repressing Small Molecules with Antibiofilm and Antivirulence Activity against Pseudomonas aeruginosa.
    van Tilburg Bernardes E; Charron-Mazenod L; Reading DJ; Reckseidler-Zenteno SL; Lewenza S
    Antimicrob Agents Chemother; 2017 May; 61(5):. PubMed ID: 28223377
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of the mucR gene regulating biosynthesis of exopolysaccharides: implications for biofilm formation in Sinorhizobium meliloti Rm1021.
    Rinaudi LV; Sorroche F; Zorreguieta A; Giordano W
    FEMS Microbiol Lett; 2010 Jan; 302(1):15-21. PubMed ID: 19929968
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium.
    Wu D; Li A; Ma F; Yang J; Xie Y
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6183-6192. PubMed ID: 27255488
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Survival Strategy for Pseudomonas aeruginosa That Uses Exopolysaccharides To Sequester and Store Iron To Stimulate Psl-Dependent Biofilm Formation.
    Yu S; Wei Q; Zhao T; Guo Y; Ma LZ
    Appl Environ Microbiol; 2016 Nov; 82(21):6403-6413. PubMed ID: 27565622
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oligomeric lipoprotein PelC guides Pel polysaccharide export across the outer membrane of
    Marmont LS; Rich JD; Whitney JC; Whitfield GB; Almblad H; Robinson H; Parsek MR; Harrison JJ; Howell PL
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2892-2897. PubMed ID: 28242707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.