These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29843413)

  • 1. Detection of Hemiplegic Walking Using a Wearable Inertia Sensing Device.
    Lee J; Park S; Shin H
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29843413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of the wearable device for hemiplegic gait detection using an accelerometer and a gyroscope.
    Sooji Park ; Jun Seok Lee ; Jaekyung Kwak ; Hangsik Shin
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1409-1412. PubMed ID: 29060141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of stroke patient walking dynamics using a tri-axial accelerometer.
    Mizuike C; Ohgi S; Morita S
    Gait Posture; 2009 Jul; 30(1):60-4. PubMed ID: 19349181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding inconsistent step-length asymmetries across hemiplegic stroke patients: impairments and compensatory gait.
    Roerdink M; Beek PJ
    Neurorehabil Neural Repair; 2011; 25(3):253-8. PubMed ID: 21041500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimate of lower trunk angles in pathological gaits using gyroscope data.
    Grimpampi E; Bonnet V; Taviani A; Mazzà C
    Gait Posture; 2013 Jul; 38(3):523-7. PubMed ID: 23497803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the Synchronization-Based Control of a Wearable Robot Having a Non-Exoskeletal Structure on the Hemiplegic Gait of Stroke Patients.
    Mizukami N; Takeuchi S; Tetsuya M; Tsukahara A; Yoshida K; Matsushima A; Maruyama Y; Tako K; Hashimoto M
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1011-1016. PubMed ID: 29752236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal dynamics of body motion in post-stroke hemiplegic patients during walking.
    Akay M; Sekine M; Tamura T; Higashi Y; Fujimoto T
    J Neural Eng; 2004 Jun; 1(2):111-6. PubMed ID: 15876629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual joint contribution to body weight support in the affected lower limb during walking in post-stroke hemiplegia.
    Kim WS; Kim MJ
    Top Stroke Rehabil; 2017 Apr; 24(3):170-176. PubMed ID: 27690285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ability and stability of running and walking in children with cerebral palsy.
    Iosa M; Morelli D; Marro T; Paolucci S; Fusco A
    Neuropediatrics; 2013 Jun; 44(3):147-54. PubMed ID: 23487325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of retropulsion of the hip, excessive hip external rotation, and excessive lateral shift of the trunk over the unaffected side in hemiplegia using three-dimensional treadmill gait analysis.
    Tanikawa H; Ohtsuka K; Mukaino M; Inagaki K; Matsuda F; Teranishi T; Kanada Y; Kagaya H; Saitoh E
    Top Stroke Rehabil; 2016 Oct; 23(5):311-7. PubMed ID: 27077992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait Disorder Detection and Classification Method Using Inertia Measurement Unit for Augmented Feedback Training in Wearable Devices.
    Kim H; Kim JW; Ko J
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Convolutional Neural Network-Based Hemiplegic Gait Detection Using an Inertial Sensor Located Freely in a Pocket.
    Shin H
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results.
    Molteni F; Gasperini G; Gaffuri M; Colombo M; Giovanzana C; Lorenzon C; Farina N; Cannaviello G; Scarano S; Proserpio D; Liberali D; Guanziroli E
    Eur J Phys Rehabil Med; 2017 Oct; 53(5):676-684. PubMed ID: 28118698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Automatic recognition and analysis of hemiplegia gait].
    Zhu Y; Xu W; Wang R; Tong Y; Lu W; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):306-314. PubMed ID: 31016949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle contributions to center of mass acceleration adapt to asymmetric walking in healthy subjects.
    Jansen K; De Groote F; Duysens J; Jonkers I
    Gait Posture; 2013 Sep; 38(4):739-44. PubMed ID: 23597940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of the fall-risk assessment test with wearable inertia sensors.
    Tmaura T; Zakaria NA; Kuwae Y; Sekine M; Minato K; Yoshida M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7217-20. PubMed ID: 24111410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principal Characteristics of Affected and Unaffected Side Trunk Movement and Gait Event Parameters during Hemiplegic Stroke Gait with IMU Sensor.
    Seo JW; Kim SG; Kim JI; Ku B; Kim K; Lee S; Kim JU
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trunk kinematics in hemiplegic gait and the effect of walking aids.
    Tyson SF
    Clin Rehabil; 1999 Aug; 13(4):295-300. PubMed ID: 10460117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Faller Classification in Older Adults Using Wearable Sensors Based on Turn and Straight-Walking Accelerometer-Based Features.
    Drover D; Howcroft J; Kofman J; Lemaire ED
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.