BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29843557)

  • 1. Preparation of carbon nanofibers/tubes using waste tyres pyrolysis oil and coal fly ash derived catalyst.
    Rambau KM; Musyoka NM; Manyala N; Ren J; Langmi HW; Mathe MK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(12):1115-1122. PubMed ID: 29843557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of waste tyres pyrolysis oil vapour in the synthesis of Zeolite Templated Carbons (ZTCs) for hydrogen storage application.
    Musyoka NM; Rambau KM; Manyala N; Ren J; Langmi HW; Mathe MK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(11):1022-1028. PubMed ID: 29775398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts.
    Dunens OM; MacKenzie KJ; Harris AT
    Environ Sci Technol; 2009 Oct; 43(20):7889-94. PubMed ID: 19921910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of waste tyres: a review.
    Williams PT
    Waste Manag; 2013 Aug; 33(8):1714-28. PubMed ID: 23735607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil.
    Quan C; Li A; Gao N
    J Hazard Mater; 2010 Jul; 179(1-3):911-7. PubMed ID: 20400225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the utilization of waste fried oil as flotation collector to remove carbon from coal fly ash.
    Yang L; Li D; Zhang L; Yan X; Ran J; Wang Y; Zhang H
    Waste Manag; 2020 Jul; 113():62-69. PubMed ID: 32505976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of silica-alumina support ratio on H
    Zhang Y; Tao Y; Huang J; Williams P
    Waste Manag Res; 2017 Oct; 35(10):1045-1054. PubMed ID: 28789599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of fly ash-derived HZSM-5: catalytic pyrolysis of Jatropha wastes in a fixed-bed reactor.
    Vichaphund S; Sricharoenchaikul V; Atong D
    Environ Technol; 2017 Jul; 38(13-14):1660-1672. PubMed ID: 27748642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristic of fly ash derived-zeolite and its catalytic performance for fast pyrolysis of Jatropha waste.
    Vichaphund S; Aht-Ong D; Sricharoenchaikul V; Atong D
    Environ Technol; 2014; 35(17-20):2254-61. PubMed ID: 25145178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct synthesis of carbon nanofibers from South African coal fly ash.
    Hintsho N; Shaikjee A; Masenda H; Naidoo D; Billing D; Franklyn P; Durbach S
    Nanoscale Res Lett; 2014; 9(1):387. PubMed ID: 25177215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conventional pyrolysis of Plastic waste for Product recovery and utilization of pyrolytic gases for carbon nanotubes production.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20007-20016. PubMed ID: 33179183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valorization of pyrolysis oils recycled from waste car tires as potential collector in coal flotation: Production, characterization, and collecting mechanism.
    Rahmanian A; Abdollahi H; Doulati Ardejani F; Khoshdast H; Mohammadzadeh A; Jannesar Malakooti S
    J Environ Manage; 2024 May; 358():120815. PubMed ID: 38593739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes.
    Wu C; Nahil MA; Miskolczi N; Huang J; Williams PT
    Environ Sci Technol; 2014; 48(1):819-26. PubMed ID: 24283272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of carbon nanotubes using pre-sintered oil fly ash via a reproducible process with large-scale potential.
    Salah N; Muhammad Alfawzan A; Allafi W; Alshahrie A; Al-Shawafi WM
    Methods; 2022 Mar; 199():37-53. PubMed ID: 34543747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of benzene/toluene/ethyl benzene/xylene (BTEX) via multiphase catalytic pyrolysis of hazardous waste polyethylene using low cost fly ash synthesized natural catalyst.
    Gaurh P; Pramanik H
    Waste Manag; 2018 Jul; 77():114-130. PubMed ID: 30008401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coal fly ash based carbons for SO2 removal from flue gases.
    Rubio B; Izquierdo MT
    Waste Manag; 2010 Jul; 30(7):1341-7. PubMed ID: 20167465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of pyrolytic non-condensable gases from polypropylene co-polymer into bamboo-type carbon nanotubes and high-quality oil using biochar as catalyst.
    Shah K; Patel S; Halder P; Kundu S; Marzbali MH; Hakeem IG; Pramanik BK; Chiang K; Patel T
    J Environ Manage; 2022 Jan; 301():113791. PubMed ID: 34592670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash.
    Ribeiro J; DaBoit K; Flores D; Kronbauer MA; Silva LF
    Sci Total Environ; 2013 May; 452-453():98-107. PubMed ID: 23500403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Nitrogen and Hydrogen Gases on the Synthesis of Carbon Nanomaterials from Coal Waste Fly Ash as a Catalyst.
    Hintsho N; Shaikjee A; Triphati PK; Masenda H; Naidoo D; Franklyn P; Durbach S
    J Nanosci Nanotechnol; 2016 May; 16(5):4672-83. PubMed ID: 27483807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.