BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2984357)

  • 1. Localization of type I benzodiazepine receptors to postsynaptic densities in bovine brain.
    Trifiletti RR; Snyder SH
    J Neurosci; 1985 Apr; 5(4):1049-57. PubMed ID: 2984357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzodiazepine receptors in human brain: characterization, subcellular localization and solubilization.
    Maloteaux JM; Octave JN; Vanisberg MA; Kollmann P; Ackermans A; Laterre C
    Prog Neuropsychopharmacol Biol Psychiatry; 1988; 12(5):773-82. PubMed ID: 2851861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Na+-independent GABA and flunitrazepam binding sites in preparations of synaptic membranes and postsynaptic densities isolated from canine cerebral cortex and cerebellum.
    Carlin RK; Siekevitz P
    J Neurochem; 1984 Oct; 43(4):1011-7. PubMed ID: 6088689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Solubilization and characterization of benzodiazepine receptors in frontal cortex of rabbit brain].
    Lin J; Hu BR
    Zhongguo Yao Li Xue Bao; 1989 May; 10(3):193-7. PubMed ID: 2558495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two pools of Triton X-100-insoluble GABA(A) receptors are present in the brain, one associated to lipid rafts and another one to the post-synaptic GABAergic complex.
    Li X; Serwanski DR; Miralles CP; Bahr BA; De Blas AL
    J Neurochem; 2007 Aug; 102(4):1329-45. PubMed ID: 17663755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential localization of GABA-dependent and GABA-independent benzodiazepine binding sites within synapses of rat cerebral cortex.
    Kardos J; Hajós F; Simonyi M
    Neurosci Lett; 1984 Aug; 48(3):355-9. PubMed ID: 6091003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular localization of "peripheral-type" binding sites for benzodiazepines in rat brain.
    Basile AS; Skolnick P
    J Neurochem; 1986 Jan; 46(1):305-8. PubMed ID: 2999338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the solubilized GABA and benzodiazepine receptors from various regions of bovine brain.
    Asano T; Yamada Y; Ogasawara N
    J Neurochem; 1983 Jan; 40(1):209-14. PubMed ID: 6294247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of benzodiazepine receptor binding in membranes from human or rat brain.
    Sieghart W; Eichinger A; Riederer P; Jellinger K
    Neuropharmacology; 1985 Aug; 24(8):751-9. PubMed ID: 3018615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities.
    Carlin RK; Grab DJ; Cohen RS; Siekevitz P
    J Cell Biol; 1980 Sep; 86(3):831-45. PubMed ID: 7410481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical characterization of an isolated and functionally reconstituted gamma-aminobutyric acid/benzodiazepine receptor.
    Bristow DR; Martin IL
    J Neurochem; 1990 Mar; 54(3):751-61. PubMed ID: 2154549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of GABAA receptor sites that are photoaffinity-labelled by [3H]flunitrazepam and [3H]Ro 15-4513.
    Duncalfe LL; Dunn SM
    Eur J Pharmacol; 1996 Mar; 298(3):313-9. PubMed ID: 8846832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of peripheral-type benzodiazepine binding sites in brain using [3H]Ro 5-4864.
    Marangos PJ; Patel J; Boulenger JP; Clark-Rosenberg R
    Mol Pharmacol; 1982 Jul; 22(1):26-32. PubMed ID: 6289073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional coupling of gamma-aminobutyric acid (GABA)A and benzodiazepine type II receptors: analysis using purified GABA/benzodiazepine receptor complex from bovine cerebral cortex.
    Taguchi J; Kuriyama K
    Neuropharmacology; 1987 Dec; 26(12):1745-50. PubMed ID: 2893987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoaffinity labeling of benzodiazepine receptor proteins with the partial inverse agonist [3H]Ro 15-4513: a biochemical and autoradiographic study.
    Sieghart W; Eichinger A; Richards JG; Möhler H
    J Neurochem; 1987 Jan; 48(1):46-52. PubMed ID: 3025369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional GABA/benzodiazepine receptor/chloride channel coupling after acute and chronic benzodiazepine treatment.
    Tietz EI; Chiu TH; Rosenberg HC
    Eur J Pharmacol; 1989 Aug; 167(1):57-65. PubMed ID: 2476326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre- versus postsynaptic localization of benzodiazepine and beta-carboline binding sites.
    Tietz EI; Chiu TH; Rosenberg HC
    J Neurochem; 1985 May; 44(5):1524-34. PubMed ID: 2985753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo and in vitro modulation of central type benzodiazepine receptors by phosphatidylserine.
    Levi de Stein M; Medina JH; De Robertis E
    Brain Res Mol Brain Res; 1989 Jan; 5(1):9-15. PubMed ID: 2538706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The gamma-aminobutyrate/benzodiazepine receptor from pig brain. Purification and characterization of the receptor complex from cerebral cortex and cerebellum.
    Kirkness EF; Turner AJ
    Biochem J; 1986 Jan; 233(1):265-70. PubMed ID: 3006661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic differences between type I and type II benzodiazepine receptors.
    Trifiletti RR; Lo MM; Snyder SH
    Mol Pharmacol; 1984 Sep; 26(2):228-40. PubMed ID: 6090882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.