These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29843698)

  • 21. Natural language processing improves identification of colorectal cancer testing in the electronic medical record.
    Denny JC; Choma NN; Peterson JF; Miller RA; Bastarache L; Li M; Peterson NB
    Med Decis Making; 2012; 32(1):188-97. PubMed ID: 21393557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Natural Language Processing Improves Detection of Nonsevere Hypoglycemia in Medical Records Versus Coding Alone in Patients With Type 2 Diabetes but Does Not Improve Prediction of Severe Hypoglycemia Events: An Analysis Using the Electronic Medical Record in a Large Health System.
    Misra-Hebert AD; Milinovich A; Zajichek A; Ji X; Hobbs TD; Weng W; Petraro P; Kong SX; Mocarski M; Ganguly R; Bauman JM; Pantalone KM; Zimmerman RS; Kattan MW
    Diabetes Care; 2020 Aug; 43(8):1937-1940. PubMed ID: 32414887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suicidal behavior-related hospitalizations among pregnant women in the USA, 2006-2012.
    Zhong QY; Gelaye B; Miller M; Fricchione GL; Cai T; Johnson PA; Henderson DC; Williams MA
    Arch Womens Ment Health; 2016 Jun; 19(3):463-72. PubMed ID: 26680447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence.
    Carrell DS; Halgrim S; Tran DT; Buist DS; Chubak J; Chapman WW; Savova G
    Am J Epidemiol; 2014 Mar; 179(6):749-58. PubMed ID: 24488511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying Suicidal Adolescents from Mental Health Records Using Natural Language Processing.
    Velupillai S; Epstein S; Bittar A; Stephenson T; Dutta R; Downs J
    Stud Health Technol Inform; 2019 Aug; 264():413-417. PubMed ID: 31437956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Use of Natural Language Processing (NLP) to Predict Suicidal Ideation and Psychiatric Symptoms in a Text-Based Mental Health Intervention in Madrid.
    Cook BL; Progovac AM; Chen P; Mullin B; Hou S; Baca-Garcia E
    Comput Math Methods Med; 2016; 2016():8708434. PubMed ID: 27752278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records.
    Zhao SS; Hong C; Cai T; Xu C; Huang J; Ermann J; Goodson NJ; Solomon DH; Cai T; Liao KP
    Rheumatology (Oxford); 2020 May; 59(5):1059-1065. PubMed ID: 31535693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of Natural Language Processing Tools to Identify and Classify Periprosthetic Femur Fractures.
    Tibbo ME; Wyles CC; Fu S; Sohn S; Lewallen DG; Berry DJ; Maradit Kremers H
    J Arthroplasty; 2019 Oct; 34(10):2216-2219. PubMed ID: 31416741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Preanesthetic History Elements by a Natural Language Processing Engine.
    Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA
    Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated extraction of sudden cardiac death risk factors in hypertrophic cardiomyopathy patients by natural language processing.
    Moon S; Liu S; Scott CG; Samudrala S; Abidian MM; Geske JB; Noseworthy PA; Shellum JL; Chaudhry R; Ommen SR; Nishimura RA; Liu H; Arruda-Olson AM
    Int J Med Inform; 2019 Aug; 128():32-38. PubMed ID: 31160009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developing an Inpatient Electronic Medical Record Phenotype for Hospital-Acquired Pressure Injuries: Case Study Using Natural Language Processing Models.
    Nurmambetova E; Pan J; Zhang Z; Wu G; Lee S; Southern DA; Martin EA; Ho C; Xu Y; Eastwood CA
    JMIR AI; 2023 Mar; 2():e41264. PubMed ID: 38875552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using natural language processing to identify child maltreatment in health systems.
    Negriff S; Lynch FL; Cronkite DJ; Pardee RE; Penfold RB
    Child Abuse Negl; 2023 Apr; 138():106090. PubMed ID: 36758373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying Diabetes Related-Complications in a Real-World Free-Text Electronic Medical Records in Hebrew Using Natural Language Processing Techniques.
    Saban M; Lutski M; Zucker I; Uziel M; Ben-Moshe D; Israel A; Vinker S; Golan-Cohen A; Laufer I; Green I; Eldor R; Merzon E
    J Diabetes Sci Technol; 2024 Jan; ():19322968241228555. PubMed ID: 38288672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing.
    Afzal N; Sohn S; Abram S; Scott CG; Chaudhry R; Liu H; Kullo IJ; Arruda-Olson AM
    J Vasc Surg; 2017 Jun; 65(6):1753-1761. PubMed ID: 28189359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying and Characterizing a Chronic Cough Cohort Through Electronic Health Records.
    Weiner M; Dexter PR; Heithoff K; Roberts AR; Liu Z; Griffith A; Hui S; Schelfhout J; Dicpinigaitis P; Doshi I; Weaver JP
    Chest; 2021 Jun; 159(6):2346-2355. PubMed ID: 33345951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Building a Natural Language Processing Tool to Identify Patients With High Clinical Suspicion for Kawasaki Disease from Emergency Department Notes.
    Doan S; Maehara CK; Chaparro JD; Lu S; Liu R; Graham A; Berry E; Hsu CN; Kanegaye JT; Lloyd DD; Ohno-Machado L; Burns JC; Tremoulet AH;
    Acad Emerg Med; 2016 May; 23(5):628-36. PubMed ID: 26826020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records.
    Fu S; Lopes GS; Pagali SR; Thorsteinsdottir B; LeBrasseur NK; Wen A; Liu H; Rocca WA; Olson JE; St Sauver J; Sohn S
    J Gerontol A Biol Sci Med Sci; 2022 Mar; 77(3):524-530. PubMed ID: 35239951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.