These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 2984392)

  • 21. Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna.
    Grundel RE; Chapman MW; Yee T; Moore DC
    Clin Orthop Relat Res; 1991 May; (266):244-58. PubMed ID: 1850335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone remodeling around implanted ceramics.
    Chang YS; Oka M; Nakamura T; Gu HO
    J Biomed Mater Res; 1996 Jan; 30(1):117-24. PubMed ID: 8788113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [A study of bone-like apatite formation on calcium phosphate ceramics in different kinds of animals in vivo].
    Duan Y; Wu Y; Wang C; Chen J; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):22-5. PubMed ID: 12744154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reaction of bone to HA, carbonate-HA, hydroxyapatite + calcium orthophosphate and to hydroxyapatite + calcium ortho- and pyrophosphate.
    Nordström EG; Niemi L; Miettinen J
    Biomed Mater Eng; 1992; 2(3):115-21. PubMed ID: 1333868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of calcium phosphate ceramic particle insertion on tooth eruption.
    Sugimoto A; Ohno K; Michi K; Kanegae H; Aigase S; Tachikawa T
    Oral Surg Oral Med Oral Pathol; 1993 Aug; 76(2):141-8. PubMed ID: 8395674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Four calcium phosphate ceramics as bone substitutes for non-weight-bearing.
    Kitsugi T; Yamamuro T; Nakamura T; Kotani S; Kokubo T; Takeuchi H
    Biomaterials; 1993 Feb; 14(3):216-24. PubMed ID: 8386554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Histomorphometric analysis of the repair of a segmental diaphyseal defect with ceramic and titanium fibermetal implants: effects of bone marrow.
    Wolff D; Goldberg VM; Stevenson S
    J Orthop Res; 1994 May; 12(3):439-46. PubMed ID: 8207598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of resorbable calcium aluminate ceramics on regulation of calcium and phosphorus in rats.
    Carvalho BA; Bajpai PK; Graves GA
    Biomedicine; 1976 Jun; 25(4):130-3. PubMed ID: 953147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term implantation of zinc-releasing calcium phosphate ceramics in rabbit femora.
    Kawamura H; Ito A; Muramatsu T; Miyakawa S; Ochiai N; Tateishi T
    J Biomed Mater Res A; 2003 Jun; 65(4):468-74. PubMed ID: 12761837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An autoradiographic study of calcium phosphate ceramic bone implants in turkeys.
    Metsger DS; DePhilip RM; Hayes TG
    Clin Orthop Relat Res; 1993 Jun; (291):283-94. PubMed ID: 8389263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of fibrous tissue formation surrounding intraperitoneal and subcutaneous implantation of ALCAP, HA, and TCP ceramic devices.
    Butler K; Benghuzzi H; Tucci M; Cason Z
    Biomed Sci Instrum; 1997; 34():18-23. PubMed ID: 9603006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do porous calcium hydroxyapatite ceramics cause porosis in bone? A bone densitometry and biomechanical study on cortical bones of rabbits.
    Korkusuz F; Karamete K; Irfanoğlu B; Yetkin H; Hastings GW; Akkas N
    Biomaterials; 1995 May; 16(7):537-43. PubMed ID: 7492718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical and histological sequences of membranous ossification in ectopic site.
    Yoshikawa T; Ohgushi H; Okumura M; Tamai S; Dohi Y; Moriyama T
    Calcif Tissue Int; 1992 Feb; 50(2):184-8. PubMed ID: 1315189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo.
    Nakahara H; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1992 Mar; (276):291-8. PubMed ID: 1537169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new glass-ceramic for bone replacement: evaluation of its bonding to bone tissue.
    Nakamura T; Yamamuro T; Higashi S; Kokubo T; Itoo S
    J Biomed Mater Res; 1985; 19(6):685-98. PubMed ID: 3001094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradation behavior of various calcium phosphate materials in bone tissue.
    Klein CP; Driessen AA; de Groot K; van den Hooff A
    J Biomed Mater Res; 1983 Sep; 17(5):769-84. PubMed ID: 6311838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The interface between hydroxyapatite ceramic and newly formed bone in scanning electron microscopy].
    Brill W; Katthagen BD
    Z Orthop Ihre Grenzgeb; 1987; 125(2):183-7. PubMed ID: 3039750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization.
    Wang W; Itoh S; Tanaka Y; Nagai A; Yamashita K
    Acta Biomater; 2009 Oct; 5(8):3132-40. PubMed ID: 19426842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical osteobonding evaluation of electrically polarized hydroxyapatite ceramics.
    Nakamura S; Kobayashi T; Yamashita K
    J Biomed Mater Res A; 2004 Jan; 68(1):90-4. PubMed ID: 14661253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [New bone formation following implantation of various hydroxyapatite ceramics. Animal experiment with bore hole models of the sheep tibia].
    Mandelkow HK; Hallfeldt KK; Kessler SB; Gayk M; Siebeck M; Schweiberer L
    Unfallchirurg; 1990 Aug; 93(8):376-9. PubMed ID: 2392690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.