BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2984401)

  • 1. Developmental physiology of cestodes: cyclic nucleotides and the identity of putative crowding factors in Hymenolepis diminuta.
    Zavras ET; Roberts LS
    J Parasitol; 1985 Feb; 71(1):96-105. PubMed ID: 2984401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental physiology of cestodes. XVII. Some biological properties of putative "crowding factors" in Hymenolepis diminuta.
    Roberts LS; Insler GD
    J Parasitol; 1982 Apr; 68(2):263-9. PubMed ID: 7077457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental physiology of cestodes: characterization of putative crowding factors in Hymenolepis diminuta.
    Zavras ET; Roberts LS
    J Parasitol; 1984 Dec; 70(6):937-44. PubMed ID: 6527190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo effects of putative crowding factors on development of Hymenolepis diminuta.
    Cook RL; Roberts LS
    J Parasitol; 1991 Feb; 77(1):21-5. PubMed ID: 1846915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cGMP secreted from the tapeworm Hymenolepis diminuta is a signal molecule to the host intestine.
    Zimmerman NP; Brownfield MS; DeVente J; Bass P; Oaks JA
    J Parasitol; 2008 Aug; 94(4):771-9. PubMed ID: 18576774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water balance and its relation to fermentation acid production in the intestinal parasites Hymenolepis diminuta (Cestoda) and Moniliformis moniliformis (Acanthocephala).
    Uglem GL
    J Parasitol; 1991 Dec; 77(6):874-83. PubMed ID: 1779290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lung catecholamines and cyclic nucleotides during perinatal development in the rat. Possible relationships with biochemical and morphological differentiation.
    Tordet C; Bertin R; Gardey C; Richard MO; Dameron F; Marin L
    Pediatr Res; 1981 May; 15(5):787-93. PubMed ID: 6264373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the reproductive system of Hymenolepis diminuta using autoradiography and transplantation.
    Nollen PM
    J Parasitol; 1975 Feb; 61(1):100-4. PubMed ID: 1172942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial biochemical and functional characterization of cyclic nucleotide phosphodiesterase isozymes in canine colonic smooth muscle.
    Barnette MS; Manning CD; Price WJ; Barone FC
    J Pharmacol Exp Ther; 1993 Feb; 264(2):801-12. PubMed ID: 7679736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents.
    Marcoz P; Prigent AF; Lagarde M; Nemoz G
    Mol Pharmacol; 1993 Nov; 44(5):1027-35. PubMed ID: 8246905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical effects of thiabendazole and cambendazole on Hymenolepis diminuta (Cestoda) in vivo.
    McCracken RO; Taylor DD
    J Parasitol; 1983 Apr; 69(2):295-301. PubMed ID: 6854471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An explanation of the apparent reversal of the circadian migration by Hymenolepis diminuta (Cestoda) in the rat.
    Tanaka RD; MacInnis AJ
    J Parasitol; 1975 Apr; 61(2):271-80. PubMed ID: 1127555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunologically mediated rejection of Hymenolepis diminuta by its normal host, the rat.
    Andreassen J; Hopkins CA
    J Parasitol; 1980 Dec; 66(6):898-903. PubMed ID: 7218109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lowered cAMP and cGMP signalling in the brain during levodopa-induced dyskinesias in hemiparkinsonian rats: new aspects in the pathogenetic mechanisms.
    Giorgi M; D'Angelo V; Esposito Z; Nuccetelli V; Sorge R; Martorana A; Stefani A; Bernardi G; Sancesario G
    Eur J Neurosci; 2008 Sep; 28(5):941-50. PubMed ID: 18717735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of phosphodiesterase inhibition on cortical spreading depression and associated changes in extracellular cyclic GMP.
    Wang M; Urenjak J; Fedele E; Obrenovitch TP
    Biochem Pharmacol; 2004 Apr; 67(8):1619-27. PubMed ID: 15041479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of human and rabbit vaginal smooth muscle cell cultures: effects of vasoactive agents on intracellular levels of cyclic nucleotides.
    Traish A; Moreland RB; Huang YH; Kim NN; Berman J; Goldstein I
    Mol Cell Biol Res Commun; 1999 Aug; 2(2):131-7. PubMed ID: 10542137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-regulation of intracellular cGMP and cAMP in cultured human corpus cavernosum smooth muscle cells.
    Kim NN; Huang Y; Moreland RB; Kwak SS; Goldstein I; Traish A
    Mol Cell Biol Res Commun; 2000 Jul; 4(1):10-4. PubMed ID: 11152621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expulsion of the gastrointestinal cestode, Hymenolepis diminuta by tolerant rats: evidence for mediation by a Th2 type immune enhanced goblet cell hyperplasia, increased mucin production and secretion.
    Webb RA; Hoque T; Dimas S
    Parasite Immunol; 2007 Jan; 29(1):11-21. PubMed ID: 17187651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of cyclic nucleotides, norepinephrine and calcium on 3H-uridine incorporation into RNA in thyroid slices.
    Kleiman de Pisarev DL; Pisarev MA; Juvenal GJ
    Acta Physiol Pharmacol Latinoam; 1984; 34(1):31-6. PubMed ID: 6206682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of restricted food intake on production, catabolism, and effects of IGF-I and cyclic nucleotides in cultured ovarian tissue of domestic nutria (Myocastor coypus).
    Sirotkin AV; Mertin D; Süvegová K; Makarevich AV; Genieser HG; Luck MR; Osadchuk LV
    Gen Comp Endocrinol; 2000 Feb; 117(2):207-17. PubMed ID: 10642443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.