These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29844178)

  • 1. Fluctuating hydrogen-bond networks govern anomalous electron transfer kinetics in a blue copper protein.
    Kretchmer JS; Boekelheide N; Warren JJ; Winkler JR; Gray HB; Miller TF
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6129-6134. PubMed ID: 29844178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins.
    Farver O; Skov LK; van de Kamp M; Canters GW; Pecht I
    Eur J Biochem; 1992 Dec; 210(2):399-403. PubMed ID: 1459124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mimicking protein-protein electron transfer: voltammetry of Pseudomonas aeruginosa azurin and the Thermus thermophilus Cu(A) domain at omega-derivatized self-assembled-monolayer gold electrodes.
    Fujita K; Nakamura N; Ohno H; Leigh BS; Niki K; Gray HB; Richards JH
    J Am Chem Soc; 2004 Nov; 126(43):13954-61. PubMed ID: 15506756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed azurins show lower reorganization free energies for intraprotein electron transfer.
    Farver O; Marshall NM; Wherland S; Lu Y; Pecht I
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10536-40. PubMed ID: 23759745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron tunneling in azurin: the coupling across a beta-sheet.
    Regan JJ; Di Bilio AJ; Langen R; Skov LK; Winkler JR; Gray HB; Onuchic JN
    Chem Biol; 1995 Jul; 2(7):489-96. PubMed ID: 9383451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron tunneling in single crystals of Pseudomonas aeruginosa azurins.
    Crane BR; Di Bilio AJ; Winkler JR; Gray HB
    J Am Chem Soc; 2001 Nov; 123(47):11623-31. PubMed ID: 11716717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced rate of intramolecular electron transfer in an engineered purple CuA azurin.
    Farver O; Lu Y; Ang MC; Pecht I
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):899-902. PubMed ID: 9927665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ligand substitution on long-range electron transfer in azurins.
    Farver O; Jeuken LJ; Canters GW; Pecht I
    Eur J Biochem; 2000 Jun; 267(11):3123-9. PubMed ID: 10824096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer reactivity of type zero Pseudomonas aeruginosa azurin.
    Lancaster KM; Farver O; Wherland S; Crane EJ; Richards JH; Pecht I; Gray HB
    J Am Chem Soc; 2011 Apr; 133(13):4865-73. PubMed ID: 21405124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of Pseudomonas aeruginosa azurin mutants: cavities in beta-barrel do not affect refolding speed.
    Pozdnyakova I; Guidry J; Wittung-Stafshede P
    Biophys J; 2002 May; 82(5):2645-51. PubMed ID: 11964251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron self-exchange in azurin: calculation of the superexchange electron tunneling rate.
    Mikkelsen KV; Skov LK; Nar H; Farver O
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5443-5. PubMed ID: 8516286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of His117 in the redox reactions of azurin from Pseudomonas aeruginosa.
    Gorren AC; den Blaauwen T; Canters GW; Hopper DJ; Duine JA
    FEBS Lett; 1996 Feb; 381(1-2):140-2. PubMed ID: 8641423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the mechanism of short-range electron transfer using an immobilized cupredoxin.
    Monari S; Battistuzzi G; Bortolotti CA; Yanagisawa S; Sato K; Li C; Salard I; Kostrz D; Borsari M; Ranieri A; Dennison C; Sola M
    J Am Chem Soc; 2012 Jul; 134(29):11848-51. PubMed ID: 22788731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-transfer properties of Pseudomonas aeruginosa [Lys44, Glu64]azurin.
    Van Pouderoyen G; Cigna G; Rolli G; Cutruzzolà F; Malatesta F; Silvestrini MC; Brunori M; Canters GW
    Eur J Biochem; 1997 Jul; 247(1):322-31. PubMed ID: 9249043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the double azurin mutant Cys3Ser/Ser100Pro from Pseudomonas aeruginosa at 1.8 A resolution: its folding-unfolding energy and unfolding kinetics.
    Okvist M; Bonander N; Sandberg A; Karlsson BG; Krengel U; Xue Y; Sjölin L
    Biochim Biophys Acta; 2002 Apr; 1596(2):336-45. PubMed ID: 12007613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A few key residues determine the high redox potential shift in azurin mutants.
    Zanetti-Polzi L; Bortolotti CA; Daidone I; Aschi M; Amadei A; Corni S
    Org Biomol Chem; 2015 Dec; 13(45):11003-13. PubMed ID: 26381463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental signatures of short- and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions.
    Khoshtariya DE; Dolidze TD; Shushanyan M; Davis KL; Waldeck DH; van Eldik R
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2757-62. PubMed ID: 20133645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining photoinduced energy transfer in Pseudomonas aeruginosa azurin.
    Tobin PH; Wilson CJ
    J Am Chem Soc; 2014 Feb; 136(5):1793-802. PubMed ID: 24467236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of hydrogen bonding at the active site of a cupredoxin: the Phe114Pro azurin variant.
    Yanagisawa S; Banfield MJ; Dennison C
    Biochemistry; 2006 Jul; 45(29):8812-22. PubMed ID: 16846224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Deformation and Electronic Structure of a Blue Copper Azurin in a Solid-State Junction.
    Romero-Muñiz C; Ortega M; Vilhena JG; Diéz-Pérez I; Cuevas JC; Pérez R; Zotti LA
    Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31546917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.