BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 29844227)

  • 1. Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments.
    Demurtas OC; Frusciante S; Ferrante P; Diretto G; Azad NH; Pietrella M; Aprea G; Taddei AR; Romano E; Mi J; Al-Babili S; Frigerio L; Giuliano G
    Plant Physiol; 2018 Jul; 177(3):990-1006. PubMed ID: 29844227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of Escherichia coli cell factories for crocin biosynthesis.
    Wang W; He P; Zhao D; Ye L; Dai L; Zhang X; Sun Y; Zheng J; Bi C
    Microb Cell Fact; 2019 Jul; 18(1):120. PubMed ID: 31277660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme.
    Ahrazem O; Rubio-Moraga A; Berman J; Capell T; Christou P; Zhu C; Gómez-Gómez L
    New Phytol; 2016 Jan; 209(2):650-63. PubMed ID: 26377696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Glycosyltransferase Enzyme from Family 91, UGT91P3, Is Responsible for the Final Glucosylation Step of Crocins in Saffron (
    López-Jimenez AJ; Frusciante S; Niza E; Ahrazem O; Rubio-Moraga Á; Diretto G; Gómez-Gómez L
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus).
    Diretto G; Ahrazem O; Rubio-Moraga Á; Fiore A; Sevi F; Argandoña J; Gómez-Gómez L
    New Phytol; 2019 Oct; 224(2):725-740. PubMed ID: 31356694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ABCC Transporters Mediate the Vacuolar Accumulation of Crocins in Saffron Stigmas.
    Demurtas OC; de Brito Francisco R; Diretto G; Ferrante P; Frusciante S; Pietrella M; Aprea G; Borghi L; Feeney M; Frigerio L; Coricello A; Costa G; Alcaro S; Martinoia E; Giuliano G
    Plant Cell; 2019 Nov; 31(11):2789-2804. PubMed ID: 31548254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron.
    Ahrazem O; Rubio-Moraga A; Argandoña-Picazo J; Castillo R; Gómez-Gómez L
    Plant Mol Biol; 2016 Jun; 91(3):355-74. PubMed ID: 27071403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus.
    Ahrazem O; Argandoña J; Fiore A; Rujas A; Rubio-Moraga Á; Castillo R; Gómez-Gómez L
    BMC Genomics; 2019 Apr; 20(1):320. PubMed ID: 31029081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis.
    Ahrazem O; Argandoña J; Fiore A; Aguado C; Luján R; Rubio-Moraga Á; Marro M; Araujo-Andrade C; Loza-Alvarez P; Diretto G; Gómez-Gómez L
    Sci Rep; 2018 Feb; 8(1):2843. PubMed ID: 29434251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde.
    Gómez-Gómez L; Pacios LF; Diaz-Perales A; Garrido-Arandia M; Argandoña J; Rubio-Moraga Á; Ahrazem O
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29747375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma.
    Gómez-Gómez L; Parra-Vega V; Rivas-Sendra A; Seguí-Simarro JM; Molina RV; Pallotti C; Rubio-Moraga Á; Diretto G; Prieto A; Ahrazem O
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28045431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis.
    Frusciante S; Diretto G; Bruno M; Ferrante P; Pietrella M; Prado-Cabrero A; Rubio-Moraga A; Beyer P; Gomez-Gomez L; Al-Babili S; Giuliano G
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12246-51. PubMed ID: 25097262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas.
    Moraga AR; Nohales PF; Pérez JA; Gómez-Gómez L
    Planta; 2004 Oct; 219(6):955-66. PubMed ID: 15605174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast.
    Tan H; Chen X; Liang N; Chen R; Chen J; Hu C; Li Q; Li Q; Pei W; Xiao W; Yuan Y; Chen W; Zhang L
    J Exp Bot; 2019 Sep; 70(18):4819-4834. PubMed ID: 31056664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues.
    Zheng X; Mi J; Balakrishna A; Liew KX; Ablazov A; Sougrat R; Al-Babili S
    Plant Biotechnol J; 2022 Nov; 20(11):2202-2216. PubMed ID: 35997958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis.
    Ashraf N; Jain D; Vishwakarma RA
    BMC Plant Biol; 2015 Feb; 15():25. PubMed ID: 25640597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives.
    Castillo R; Fernández JA; Gómez-Gómez L
    Plant Physiol; 2005 Oct; 139(2):674-89. PubMed ID: 16183835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering crocus tepals.
    Rubio Moraga A; Ahrazem O; Rambla JL; Granell A; Gómez Gómez L
    PLoS One; 2013; 8(9):e71946. PubMed ID: 24058441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system.
    Martí M; Diretto G; Aragonés V; Frusciante S; Ahrazem O; Gómez-Gómez L; Daròs JA
    Metab Eng; 2020 Sep; 61():238-250. PubMed ID: 32629020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis.
    Baba SA; Mohiuddin T; Basu S; Swarnkar MK; Malik AH; Wani ZA; Abbas N; Singh AK; Ashraf N
    BMC Genomics; 2015 Sep; 16(1):698. PubMed ID: 26370545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.