BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 29844255)

  • 1. A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey.
    Oberemok VV; Laikova KV; Repetskaya AI; Kenyo IM; Gorlov MV; Kasich IN; Krasnodubets AM; Gal'chinsky NV; Fomochkina II; Zaitsev AS; Bekirova VV; Seidosmanova EE; Dydik KI; Meshcheryakova AO; Nazarov SA; Smagliy NN; Chelengerova EL; Kulanova AA; Deri K; Subbotkin MV; Useinov RZ; Shumskykh MN; Kubyshkin AV
    Molecules; 2018 May; 23(6):. PubMed ID: 29844255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease.
    Sardone V; Zhou H; Muntoni F; Ferlini A; Falzarano MS
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28379182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Gene-specific treatment approaches in muscle diseases].
    Lehmann Urban D; Schneider I
    Nervenarzt; 2020 Apr; 91(4):318-323. PubMed ID: 32076754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides.
    Ezzat K; Aoki Y; Koo T; McClorey G; Benner L; Coenen-Stass A; O'Donovan L; Lehto T; Garcia-Guerra A; Nordin J; Saleh AF; Behlke M; Morris J; Goyenvalle A; Dugovic B; Leumann C; Gordon S; Gait MJ; El-Andaloussi S; Wood MJ
    Nano Lett; 2015 Jul; 15(7):4364-73. PubMed ID: 26042553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New developments in exon skipping and splice modulation therapies for neuromuscular diseases.
    Touznik A; Lee JJ; Yokota T
    Expert Opin Biol Ther; 2014 Jun; 14(6):809-19. PubMed ID: 24620745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcript-Targeted Therapy Based on RNA Interference and Antisense Oligonucleotides: Current Applications and Novel Molecular Targets.
    Barresi V; Musmeci C; Rinaldi A; Condorelli DF
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfection of normal primary human skeletal myoblasts with p21 and p57 antisense oligonucleotides to improve their proliferation: a first step towards an alternative molecular therapy approach of Duchenne muscular dystrophy.
    Endesfelder S; Bucher S; Kliche A; Reszka R; Speer A
    J Mol Med (Berl); 2003 Jun; 81(6):355-62. PubMed ID: 12732930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle delivery of antisense oligonucleotides and their application in the exon skipping strategy for Duchenne muscular dystrophy.
    Falzarano MS; Passarelli C; Ferlini A
    Nucleic Acid Ther; 2014 Feb; 24(1):87-100. PubMed ID: 24506782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing.
    Hanson B; Wood MJA; Roberts TC
    RNA Biol; 2021 Jul; 18(7):1048-1062. PubMed ID: 33472516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing therapy for neuromuscular disease.
    Douglas AG; Wood MJ
    Mol Cell Neurosci; 2013 Sep; 56():169-85. PubMed ID: 23631896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knocking Down Long Noncoding RNAs Using Antisense Oligonucleotide Gapmers.
    Maruyama R; Yokota T
    Methods Mol Biol; 2020; 2176():49-56. PubMed ID: 32865781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy.
    Passini MA; Bu J; Richards AM; Kinnecom C; Sardi SP; Stanek LM; Hua Y; Rigo F; Matson J; Hung G; Kaye EM; Shihabuddin LS; Krainer AR; Bennett CF; Cheng SH
    Sci Transl Med; 2011 Mar; 3(72):72ra18. PubMed ID: 21368223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense-mediated exon skipping: taking advantage of a trick from Mother Nature to treat rare genetic diseases.
    Veltrop M; Aartsma-Rus A
    Exp Cell Res; 2014 Jul; 325(1):50-5. PubMed ID: 24486759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping.
    Li D; Mastaglia FL; Fletcher S; Wilton SD
    Trends Pharmacol Sci; 2018 Nov; 39(11):982-994. PubMed ID: 30282590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Better living through peptide-conjugated chemistry: next-generation antisense oligonucleotides.
    McNally EM; Leverson BD
    J Clin Invest; 2019 Nov; 129(11):4570-4571. PubMed ID: 31566581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Antisense therapies for neurological diseases].
    Pulst SM
    Nervenarzt; 2019 Aug; 90(8):781-786. PubMed ID: 31165208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
    Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M
    PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antisense oligonucleotides: absorption, distribution, metabolism, and excretion.
    Shadid M; Badawi M; Abulrob A
    Expert Opin Drug Metab Toxicol; 2021 Nov; 17(11):1281-1292. PubMed ID: 34643122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational development of splice-modifying antisense oligomers.
    Fletcher S; Bellgard MI; Price L; Akkari AP; Wilton SD
    Expert Opin Biol Ther; 2017 Jan; 17(1):15-30. PubMed ID: 27805416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.