These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29844260)

  • 21. Resonance-Based Sensing of Magnetic Nanoparticles Using Microfluidic Devices with Ferromagnetic Antidot Nanostructures.
    Dowling R; Narkowicz R; Lenz K; Oelschlägel A; Lindner J; Kostylev M
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Force and Torque Model of Magnetically Levitated System with 2D Halbach Array and Printed Circuit Board Coils.
    Zou M; Song M; Zhou S; Xu X; Xu F
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic magnetic bead conveyor belt.
    van Pelt S; Frijns A; den Toonder J
    Lab Chip; 2017 Nov; 17(22):3826-3840. PubMed ID: 28990614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reusable Embedded Microcoils for Magnetic Nano-Beads Trapping in Microfluidics: Magnetic Simulation and Experiments.
    Lefebvre O; Cao HH; Cortés Francisco M; Woytasik M; Dufour-Gergam E; Ammar M; Martincic E
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32121171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low cost and compact analytical microsystem for carbon dioxide determination in production processes of wine and beer.
    Calvo-López A; Ymbern O; Izquierdo D; Alonso-Chamarro J
    Anal Chim Acta; 2016 Aug; 931():64-9. PubMed ID: 27282752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micromagnet arrays enable precise manipulation of individual biological analyte-superparamagnetic bead complexes for separation and sensing.
    Rampini S; Li P; Lee GU
    Lab Chip; 2016 Oct; 16(19):3645-63. PubMed ID: 27542153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PCB-Based Magnetometer as a Platform for Quantification of Lateral-Flow Assays.
    Khodadadi M; Chang L; Trabuco JRC; Vu BV; Kourentzi K; Willson RC; Litvinov D
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrated magnetic microfluidic chip for rapid immunodetection of the prostate specific antigen using immunomagnetic beads.
    Feng Z; Zhi S; Guo L; Zhou Y; Lei C
    Mikrochim Acta; 2019 Mar; 186(4):252. PubMed ID: 30903388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexible Platform of Acoustofluidics and Metamaterials with Decoupled Resonant Frequencies.
    Zahertar S; Torun H; Sun C; Markwell C; Dong Y; Yang X; Fu Y
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On-Chip Stochastic Detection of Silver Nanoparticles without a Reference Electrode.
    Figueiredo PG; Grob L; Rinklin P; Krause KJ; Wolfrum B
    ACS Sens; 2018 Jan; 3(1):93-98. PubMed ID: 29276833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-chip magnetic separation of superparamagnetic beads for integrated molecular analysis.
    Florescu O; Wang K; Au P; Tang J; Harris E; Beatty PR; Boser BE
    J Appl Phys; 2010 Mar; 107(5):54702. PubMed ID: 20368988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Effect of Non-Uniform Magnetic Field on the Efficiency of Mixing in Droplet-Based Microfluidics: A Numerical Investigation.
    Rezaeian M; Nouri M; Hassani-Gangaraj M; Shamloo A; Nasiri R
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiplex Detection of Magnetic Beads Using Offset Field Dependent Frequency Mixing Magnetic Detection.
    Pourshahidi AM; Achtsnicht S; Nambipareechee MM; Offenhäusser A; Krause HJ
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications.
    Karasu T; Özgür E; Uzun L
    J Pharm Biomed Anal; 2023 Mar; 226():115257. PubMed ID: 36669397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid Microfluidic Mixer Based on Ferrofluid and Integrated Microscale NdFeB-PDMS Magnet.
    Zhou R; Surendran AN; Mejulu M; Lin Y
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31881667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly sensitive fluorescence detection system for microfluidic lab-on-a-chip.
    Ryu G; Huang J; Hofmann O; Walshe CA; Sze JY; McClean GD; Mosley A; Rattle SJ; deMello JC; deMello AJ; Bradley DD
    Lab Chip; 2011 May; 11(9):1664-70. PubMed ID: 21431240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Print-and-stick unibody microfluidics coupled surface plasmon resonance (SPR) chip for smartphone imaging SPR (Smart-iSRP).
    Xiao C; Eriksson J; Suska A; Filippini D; Mak WC
    Anal Chim Acta; 2022 Apr; 1201():339606. PubMed ID: 35300788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superparamagnetic nanoparticle-polystyrene bead conjugates as pathogen capture mimics: a parametric study of factors affecting capture efficiency and specificity.
    Kell AJ; Somaskandan K; Stewart G; Bergeron MG; Simard B
    Langmuir; 2008 Apr; 24(7):3493-502. PubMed ID: 18290685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Dimensional Microtubular Devices for Lab-on-a-Chip Sensing Applications.
    Wang J; Karnaushenko D; Medina-Sánchez M; Yin Y; Ma L; Schmidt OG
    ACS Sens; 2019 Jun; 4(6):1476-1496. PubMed ID: 31132252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.