BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 29844571)

  • 1. Loss of MAOA in epithelia inhibits adenocarcinoma development, cell proliferation and cancer stem cells in prostate.
    Liao CP; Lin TP; Li PC; Geary LA; Chen K; Vaikari VP; Wu JB; Lin CH; Gross ME; Shih JC
    Oncogene; 2018 Sep; 37(38):5175-5190. PubMed ID: 29844571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual inhibition of survivin and MAOA synergistically impairs growth of PTEN-negative prostate cancer.
    Xu S; Adisetiyo H; Tamura S; Grande F; Garofalo A; Roy-Burman P; Neamati N
    Br J Cancer; 2015 Jul; 113(2):242-51. PubMed ID: 26103574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis.
    Wu JB; Shao C; Li X; Li Q; Hu P; Shi C; Li Y; Chen YT; Yin F; Liao CP; Stiles BL; Zhau HE; Shih JC; Chung LW
    J Clin Invest; 2014 Jul; 124(7):2891-908. PubMed ID: 24865426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting monoamine oxidase A in advanced prostate cancer.
    Flamand V; Zhao H; Peehl DM
    J Cancer Res Clin Oncol; 2010 Nov; 136(11):1761-71. PubMed ID: 20204405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FDPS cooperates with PTEN loss to promote prostate cancer progression through modulation of small GTPases/AKT axis.
    Seshacharyulu P; Rachagani S; Muniyan S; Siddiqui JA; Cruz E; Sharma S; Krishnan R; Killips BJ; Sheinin Y; Lele SM; Smith LM; Talmon GA; Ponnusamy MP; Datta K; Batra SK
    Oncogene; 2019 Jun; 38(26):5265-5280. PubMed ID: 30914801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoamine Oxidase Deficiency Causes Prostate Atrophy and Reduces Prostate Progenitor Cell Activity.
    Yin L; Li J; Liao CP; Jason Wu B
    Stem Cells; 2018 Aug; 36(8):1249-1258. PubMed ID: 29637670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoamine oxidase A inhibitor-near-infrared dye conjugate reduces prostate tumor growth.
    Wu JB; Lin TP; Gallagher JD; Kushal S; Chung LW; Zhau HE; Olenyuk BZ; Shih JC
    J Am Chem Soc; 2015 Feb; 137(6):2366-74. PubMed ID: 25585152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAOA-mediated reprogramming of stromal fibroblasts promotes prostate tumorigenesis and cancer stemness.
    Li J; Pu T; Yin L; Li Q; Liao CP; Wu BJ
    Oncogene; 2020 Apr; 39(16):3305-3321. PubMed ID: 32066880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten-/-TP53-/- prostate cancer model.
    Abou-Kheir WG; Hynes PG; Martin PL; Pierce R; Kelly K
    Stem Cells; 2010 Dec; 28(12):2129-40. PubMed ID: 20936707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LncRNA PlncRNA-1 accelerates the progression of prostate cancer by regulating PTEN/Akt axis.
    Cui Z; Gao H; Yan N; Dai Y; Wang H; Wang M; Wang J; Zhang D; Sun P; Qi T; Wang Q; Kang W; Jin X
    Aging (Albany NY); 2021 Apr; 13(8):12113-12128. PubMed ID: 33848262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RUNX2 overexpression and PTEN haploinsufficiency cooperate to promote CXCR7 expression and cellular trafficking, AKT hyperactivation and prostate tumorigenesis.
    Bai Y; Yang Y; Yan Y; Zhong J; Blee AM; Pan Y; Ma T; Karnes RJ; Jimenez R; Xu W; Huang H
    Theranostics; 2019; 9(12):3459-3475. PubMed ID: 31281490
    [No Abstract]   [Full Text] [Related]  

  • 12. Plumbagin Inhibits Prostate Carcinogenesis in Intact and Castrated PTEN Knockout Mice via Targeting PKCε, Stat3, and Epithelial-to-Mesenchymal Transition Markers.
    Hafeez BB; Fischer JW; Singh A; Zhong W; Mustafa A; Meske L; Sheikhani MO; Verma AK
    Cancer Prev Res (Phila); 2015 May; 8(5):375-86. PubMed ID: 25627799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis.
    Tan M; Xu J; Siddiqui J; Feng F; Sun Y
    Mol Cancer; 2016 Dec; 15(1):81. PubMed ID: 27955654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monoamine oxidase A (MAOA): A promising target for prostate cancer therapy.
    Han H; Li H; Ma Y; Zhao Z; An Q; Zhao J; Shi C
    Cancer Lett; 2023 Jun; 563():216188. PubMed ID: 37076041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium.
    Fu Y; Wey S; Wang M; Ye R; Liao CP; Roy-Burman P; Lee AS
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19444-9. PubMed ID: 19033462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PTEN loss-mediated Akt activation increases the properties of cancer stem-like cell populations in prostate cancer.
    Kim RJ; Bae E; Hong YK; Hong JY; Kim NK; Ahn HJ; Oh JJ; Park DS
    Oncology; 2014; 87(5):270-9. PubMed ID: 25139413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic and transcriptomic profiling of Pten gene-knockout mouse model of prostate cancer.
    Zhang J; Kim S; Li L; Kemp CJ; Jiang C; Lü J
    Prostate; 2020 May; 80(7):588-605. PubMed ID: 32162714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of growth hormone/insulin-like growth factor deficiency on prostatic dysplasia in pbARR2-Cre, PTEN knockout mice.
    Takahara K; Ibuki N; Ghaffari M; Tearle H; Ong CJ; Azuma H; Gleave ME; Pollak M; Cox ME
    Prostate Cancer Prostatic Dis; 2013 Sep; 16(3):239-47. PubMed ID: 23689346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway.
    Erdogan S; Turkekul K; Dibirdik I; Doganlar O; Doganlar ZB; Bilir A; Oktem G
    Biomed Pharmacother; 2018 Nov; 107():793-805. PubMed ID: 30142541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PTEN loss and activation of K-RAS and β-catenin cooperate to accelerate prostate tumourigenesis.
    Jefferies MT; Cox AC; Shorning BY; Meniel V; Griffiths D; Kynaston HG; Smalley MJ; Clarke AR
    J Pathol; 2017 Dec; 243(4):442-456. PubMed ID: 29134654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.