BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29844575)

  • 1. Conformation and dynamics of soluble repetitive domain elucidates the initial β-sheet formation of spider silk.
    Oktaviani NA; Matsugami A; Malay AD; Hayashi F; Kaplan DL; Numata K
    Nat Commun; 2018 May; 9(1):2121. PubMed ID: 29844575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion effects on the conformation and dynamics of repetitive domains of a spider silk protein: implications for solubility and β-sheet formation.
    Oktaviani NA; Matsugami A; Hayashi F; Numata K
    Chem Commun (Camb); 2019 Aug; 55(66):9761-9764. PubMed ID: 31355386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ conformation of spider silk proteins in the intact major ampullate gland and in solution.
    Lefèvre T; Leclerc J; Rioux-Dubé JF; Buffeteau T; Paquin MC; Rousseau ME; Cloutier I; Auger M; Gagné SM; Boudreault S; Cloutier C; Pézolet M
    Biomacromolecules; 2007 Aug; 8(8):2342-4. PubMed ID: 17658884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking Transitions in Spider Wrapping Silk Conformation and Dynamics by (19)F Nuclear Magnetic Resonance Spectroscopy.
    Sarker M; Orrell KE; Xu L; Tremblay ML; Bak JJ; Liu XQ; Rainey JK
    Biochemistry; 2016 May; 55(21):3048-59. PubMed ID: 27153372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved spider silk domain acts as a molecular switch that controls fibre assembly.
    Hagn F; Eisoldt L; Hardy JG; Vendrely C; Coles M; Scheibel T; Kessler H
    Nature; 2010 May; 465(7295):239-42. PubMed ID: 20463741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent dimerization of spider silk N-terminal domain requires relocation of a wedged tryptophan side chain.
    Jaudzems K; Askarieh G; Landreh M; Nordling K; Hedhammar M; Jörnvall H; Rising A; Knight SD; Johansson J
    J Mol Biol; 2012 Sep; 422(4):477-87. PubMed ID: 22706024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR.
    Shi X; Holland GP; Yarger JL
    Biomacromolecules; 2015 Mar; 16(3):852-9. PubMed ID: 25619304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of spider silk elasticity.
    Dong Z; Lewis RV; Middaugh CR
    Arch Biochem Biophys; 1991 Jan; 284(1):53-7. PubMed ID: 1989503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant minimalist spider wrapping silk proteins capable of native-like fiber formation.
    Xu L; Rainey JK; Meng Q; Liu XQ
    PLoS One; 2012; 7(11):e50227. PubMed ID: 23209681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-dependent self-assembly mechanism of a single repetitive domain from a spider silk protein.
    Yang Y; Gao Z; Yang D
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124775. PubMed ID: 37169045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silk Spinning in Silkworms and Spiders.
    Andersson M; Johansson J; Rising A
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27517908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spider prey-wrapping silk is an α-helical coiled-coil/β-sheet hybrid nanofiber.
    Addison B; Onofrei D; Stengel D; Blass B; Brenneman B; Ayon J; Holland GP
    Chem Commun (Camb); 2018 Sep; 54(76):10746-10749. PubMed ID: 30191228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural conversion of the spidroin C-terminal domain during assembly of spider silk fibers.
    De Oliveira DH; Gowda V; Sparrman T; Gustafsson L; Sanches Pires R; Riekel C; Barth A; Lendel C; Hedhammar M
    Nat Commun; 2024 May; 15(1):4670. PubMed ID: 38821983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of β-sheet crystals and a glycine-rich matrix on the thermal conductivity of spider dragline silk.
    Park J; Kim D; Lee SM; Choi JU; You M; So HM; Han J; Nah J; Seol JH
    Int J Biol Macromol; 2017 Mar; 96():384-391. PubMed ID: 28013005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosine's Unique Role in the Hierarchical Assembly of Recombinant Spider Silk Proteins: From Spinning Dope to Fibers.
    Stengel D; Saric M; Johnson HR; Schiller T; Diehl J; Chalek K; Onofrei D; Scheibel T; Holland GP
    Biomacromolecules; 2023 Mar; 24(3):1463-1474. PubMed ID: 36791420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects.
    Dicko C; Knight D; Kenney JM; Vollrath F
    Biomacromolecules; 2004; 5(6):2105-15. PubMed ID: 15530023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR.
    Yang M; Nakazawa Y; Yamauchi K; Knight D; Asakura T
    Biomacromolecules; 2005; 6(6):3220-6. PubMed ID: 16283749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2.
    Brooks AE; Stricker SM; Joshi SB; Kamerzell TJ; Middaugh CR; Lewis RV
    Biomacromolecules; 2008 Jun; 9(6):1506-10. PubMed ID: 18457450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana.
    Huang W; Lin Z; Sin YM; Li D; Gong Z; Yang D
    Biochimie; 2006 Jul; 88(7):849-58. PubMed ID: 16616407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.