These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 29844575)

  • 21. Degree of Biomimicry of Artificial Spider Silk Spinning Assessed by NMR Spectroscopy.
    Otikovs M; Andersson M; Jia Q; Nordling K; Meng Q; Andreas LB; Pintacuda G; Johansson J; Rising A; Jaudzems K
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12571-12575. PubMed ID: 28791761
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly.
    Giesa T; Perry CC; Buehler MJ
    Biomacromolecules; 2016 Feb; 17(2):427-36. PubMed ID: 26669270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils.
    Nova A; Keten S; Pugno NM; Redaelli A; Buehler MJ
    Nano Lett; 2010 Jul; 10(7):2626-34. PubMed ID: 20518518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tyrosine Templating in the Self-Assembly and Crystallization of Silk Fibroin.
    Partlow BP; Bagheri M; Harden JL; Kaplan DL
    Biomacromolecules; 2016 Nov; 17(11):3570-3579. PubMed ID: 27736062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spider-silk inspired polymeric networks by harnessing the mechanical potential of β-sheets through network guided assembly.
    Chan NJ; Gu D; Tan S; Fu Q; Pattison TG; O'Connor AJ; Qiao GG
    Nat Commun; 2020 Apr; 11(1):1630. PubMed ID: 32242004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spider silk: from soluble protein to extraordinary fiber.
    Heim M; Keerl D; Scheibel T
    Angew Chem Int Ed Engl; 2009; 48(20):3584-96. PubMed ID: 19212993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the Impact of Acidification on Spider Silk Assembly Kinetics.
    Xu D; Guo C; Holland GP
    Biomacromolecules; 2015 Jul; 16(7):2072-9. PubMed ID: 26030517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembled semi-crystallinity at parallel β-sheet nanocrystal interfaces in clustered MaSp1 (spider silk) proteins.
    Sintya E; Alam P
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():366-71. PubMed ID: 26478322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of ageing on the mechanical properties of the silk of the bridge spider Larinioides cornutus (Clerck, 1757).
    Lepore E; Isaia M; Mammola S; Pugno N
    Sci Rep; 2016 May; 6():24699. PubMed ID: 27156712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stretching of supercontracted fibers: a link between spinning and the variability of spider silk.
    Guinea GV; Elices M; Pérez-Rigueiro J; Plaza GR
    J Exp Biol; 2005 Jan; 208(Pt 1):25-30. PubMed ID: 15601874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation.
    Kronqvist N; Otikovs M; Chmyrov V; Chen G; Andersson M; Nordling K; Landreh M; Sarr M; Jörnvall H; Wennmalm S; Widengren J; Meng Q; Rising A; Otzen D; Knight SD; Jaudzems K; Johansson J
    Nat Commun; 2014; 5():3254. PubMed ID: 24510122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The natural silk spinning process. A nucleation-dependent aggregation mechanism?
    Li G; Zhou P; Shao Z; Xie X; Chen X; Wang H; Chunyu L; Yu T
    Eur J Biochem; 2001 Dec; 268(24):6600-6. PubMed ID: 11737214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dimerization of the Conserved N-Terminal Domain of a Spider Silk Protein Controls the Self-Assembly of the Repetitive Core Domain.
    Bauer J; Scheibel T
    Biomacromolecules; 2017 Aug; 18(8):2521-2528. PubMed ID: 28649828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A proposed model for dragline spider silk self-assembly: insights from the effect of the repetitive domain size on fiber properties.
    Ittah S; Barak N; Gat U
    Biopolymers; 2010 May; 93(5):458-68. PubMed ID: 20014164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spider silk gut: development and characterization of a novel strong spider silk fiber.
    Jiang P; Marí-Buyé N; Madurga R; Arroyo-Hernández M; Solanas C; Gañán A; Daza R; Plaza GR; Guinea GV; Elices M; Cenis JL; Pérez-Rigueiro J
    Sci Rep; 2014 Dec; 4():7326. PubMed ID: 25475975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk--implications for fiber formation.
    Hagn F; Thamm C; Scheibel T; Kessler H
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):310-3. PubMed ID: 21064058
    [No Abstract]   [Full Text] [Related]  

  • 38. Utilizing conformational changes for patterning thin films of recombinant spider silk proteins.
    Young SL; Gupta M; Hanske C; Fery A; Scheibel T; Tsukruk VV
    Biomacromolecules; 2012 Oct; 13(10):3189-99. PubMed ID: 22947370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the Mechanical Properties and Structure Transition of Antheraea pernyi Silk Fiber Induced by Its Contraction.
    Wang Y; Wen J; Peng B; Hu B; Chen X; Shao Z
    Biomacromolecules; 2018 Jun; 19(6):1999-2006. PubMed ID: 29401377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantifying the fraction of glycine and alanine in beta-sheet and helical conformations in spider dragline silk using solid-state NMR.
    Holland GP; Jenkins JE; Creager MS; Lewis RV; Yarger JL
    Chem Commun (Camb); 2008 Nov; (43):5568-70. PubMed ID: 18997954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.