BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2984467)

  • 21. Effects of proopiomelanocortin-derived peptides, methionine-enkephalin and forskolin on the maturation of ovine fetal adrenal cells in culture.
    Durand P; Cathiard AM; Seidah NG; Chretien M; Saez JM
    Biol Reprod; 1984 Nov; 31(4):694-704. PubMed ID: 6095937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ectopic Agouti protein overexpression increases stimulated corticosterone production without effect on adenylate cyclase activity in mouse adrenal cells.
    Shevchenko AY; Bazhan NM; Makarova EN; Yakovleva TV; Karkaeva NR
    Eur J Endocrinol; 2004 Nov; 151(5):613-8. PubMed ID: 15538940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of ACTH and expression of the melanocortin-2 receptor in the neonatal mouse testis.
    Johnston H; King PJ; O'Shaughnessy PJ
    Reproduction; 2007 Jun; 133(6):1181-7. PubMed ID: 17636172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Responses of Y1 adrenocortical tumor cells to o-nitrophenyl sulfenyl ACTH.
    Rae PA; Zinman H; Ramachandran J; Schimmer BP
    Mol Cell Endocrinol; 1980 Mar; 17(3):171-9. PubMed ID: 6245980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of guinea pig adrenal P450c21 messenger RNA, protein and activity by RU486.
    Vallée M; Perron S; Tremblay Y; Bélanger A
    J Steroid Biochem Mol Biol; 1995 Jul; 54(1-2):31-8. PubMed ID: 7632612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of corticotropin and steroidogenic enzyme mRNAs in human fetal adrenal cells by corticotropin, angiotensin-II and transforming growth factor beta 1.
    Lebrethon MC; Jaillard C; Naville D; Bégeot M; Saez JM
    Mol Cell Endocrinol; 1994 Dec; 106(1-2):137-43. PubMed ID: 7895901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutations in cyclic AMP-dependent protein kinase and corticotropin (ACTH)-sensitive adenylate cyclase affect adrenal steroidogenesis.
    Rae PA; Gutmann NS; Tsao J; Schimmer BP
    Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1896-900. PubMed ID: 221910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intermediate filaments and steroidogenesis in adrenal Y-1 cells: acrylamide stimulation of steroid production.
    Shiver TM; Sackett DL; Knipling L; Wolff J
    Endocrinology; 1992 Jul; 131(1):201-7. PubMed ID: 1319319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of calmodulin in the responses to adrenocorticotropin of plasma membranes from adrenal cells.
    Papadopoulos V; Widmaier EP; Hall PF
    Endocrinology; 1990 May; 126(5):2465-73. PubMed ID: 2158426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chloride efflux in unstimulated Leydig cells causes autonomous cAMP production and stimulatory/inhibitory steroidogenesis with an efflux inhibitor.
    Panesar NS; Chan KW
    Steroids; 2005 Aug; 70(9):652-9. PubMed ID: 15913686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. cAMP-independent signaling regulates steroidogenesis in mouse Leydig cells in the absence of StAR phosphorylation.
    Manna PR; Chandrala SP; Jo Y; Stocco DM
    J Mol Endocrinol; 2006 Aug; 37(1):81-95. PubMed ID: 16901926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on neuropeptide Y receptors in a mouse adrenocortical cell line.
    Weng G; Yee F; Michl P; Reis D; Wahlestedt C
    Mol Pharmacol; 1995 Jul; 48(1):9-14. PubMed ID: 7623780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clonal variation in response to adrenocorticotropin in cultured bovine adrenocortical cells: relationship to senescence.
    Hornsby PJ; Aldern KA; Harris SE
    J Cell Physiol; 1986 Dec; 129(3):395-402. PubMed ID: 3023404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of hCG-stimulated steroidogenesis in cultured mouse Leydig tumor cells by bisphenol A and octylphenols.
    Nikula H; Talonpoika T; Kaleva M; Toppari J
    Toxicol Appl Pharmacol; 1999 Jun; 157(3):166-73. PubMed ID: 10373400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulatory mechanism of Toona sinensis on mouse leydig cell steroidogenesis.
    Poon SL; Leu SF; Hsu HK; Liu MY; Huang BM
    Life Sci; 2005 Feb; 76(13):1473-87. PubMed ID: 15680312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of cyclic AMP and protein kinase on the steroidogenic action of ACTH, prostaglandin E1 and dibutyryl cyclic AMP in normal adrenal cells and adrenal tumor cells from humans.
    Saez JM; Evain D; Gallet D
    J Cyclic Nucleotide Res; 1978 Aug; 4(4):311-21. PubMed ID: 214468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative stress-induced inhibition of adrenal steroidogenesis requires participation of p38 mitogen-activated protein kinase signaling pathway.
    Abidi P; Zhang H; Zaidi SM; Shen WJ; Leers-Sucheta S; Cortez Y; Han J; Azhar S
    J Endocrinol; 2008 Jul; 198(1):193-207. PubMed ID: 18417530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of ascorbic acid on ACTH-induced cyclic AMP formation and steroidogenesis in isolated adrenal cells of vitamin E-deficient rats.
    Nathans AH; Kitabchi AE
    Biochim Biophys Acta; 1975 Aug; 399(2):244-53. PubMed ID: 169901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ontogeny of the ACTH receptor, adenylate cyclase and steroidogenesis in adrenal.
    Saez JM; Durand P; Cathiard AM
    Mol Cell Endocrinol; 1984 Dec; 38(2-3):93-102. PubMed ID: 6096187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modification of steroidogenesis in a mouse adrenal cell line (Y-1) transformed by simian adenovirus SA-7.
    Lefevre A; Faucon-Biguet N; Mathieu D; Tournier P; Saez JM
    Steroids; 1981 Mar; 31(3):315-25. PubMed ID: 6262249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.