BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29844974)

  • 1. Molecular response of canola to salt stress: insights on tolerance mechanisms.
    Shokri-Gharelo R; Noparvar PM
    PeerJ; 2018; 6():e4822. PubMed ID: 29844974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAseq Analysis Reveals Altered Expression of Key Ion Transporters Causing Differential Uptake of Selective Ions in Canola (
    Ulfat M; Athar HU; Khan ZD; Kalaji HM
    Plants (Basel); 2020 Jul; 9(7):. PubMed ID: 32674475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress.
    Banaei-Asl F; Farajzadeh D; Bandehagh A; Komatsu S
    Biochim Biophys Acta; 2016 Sep; 1864(9):1222-1236. PubMed ID: 27137672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in
    Naheed R; Aslam H; Kanwal H; Farhat F; Abo Gamar MI; Al-Mushhin AAM; Jabborova D; Javed Ansari M; Shaheen S; Aqeel M; Noman A; Hessini K
    Saudi J Biol Sci; 2021 Oct; 28(10):5469-5479. PubMed ID: 34588857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS.
    Kholghi M; Toorchi M; Bandehagh A; Ostendorp A; Ostendorp S; Hanhart P; Kehr J
    Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):227-236. PubMed ID: 30611781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L.
    Rossi L; Zhang W; Lombardini L; Ma X
    Environ Pollut; 2016 Dec; 219():28-36. PubMed ID: 27661725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomic analysis of canola leaves under salinity stress.
    Bandehagh A; Salekdeh GH; Toorchi M; Mohammadi A; Komatsu S
    Proteomics; 2011 May; 11(10):1965-75. PubMed ID: 21480525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated transcriptomics and metabolomics analysis to characterize alkali stress responses in canola (Brassica napus L.).
    Wang W; Pang J; Zhang F; Sun L; Yang L; Zhao Y; Yang Y; Wang Y; Siddique KHM
    Plant Physiol Biochem; 2021 Sep; 166():605-620. PubMed ID: 34186284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Salt Tolerance under Nitrate Nutrition is Associated with Apoplast Na+ Content in Canola (Brassica. napus L.) and Rice (Oryza sativa L.) Plants.
    Gao L; Liu M; Wang M; Shen Q; Guo S
    Plant Cell Physiol; 2016 Nov; 57(11):2323-2333. PubMed ID: 27519313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide, calmodulin and calcium protein kinase interactions in the response of Brassica napus to salinity stress.
    Rezayian M; Zarinkamar F
    Plant Biol (Stuttg); 2023 Apr; 25(3):411-419. PubMed ID: 36779525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on salt tolerance with YHem1 transgenic canola (Brassica napus).
    Sun XE; Feng XX; Li C; Zhang ZP; Wang LJ
    Physiol Plant; 2015 Jun; 154(2):223-42. PubMed ID: 25220348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative proteomic analysis of responses to high temperature stress in hypocotyl of Canola (Brassica napus L.).
    Ismaili A; Salavati A; Mohammadi PP
    Protein Pept Lett; 2014; 22(3):285-99. PubMed ID: 25420948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of some antioxidants on canola plants grown under soil salt stress condition.
    Sakr MT; Arafa AA
    Pak J Biol Sci; 2009 Apr; 12(7):582-8. PubMed ID: 19580015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salinity-induced glutathione synthesis in Brassica napus.
    Ruiz JM; Blumwald E
    Planta; 2002 Apr; 214(6):965-9. PubMed ID: 11941474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance.
    Yıldız M; Terzi H
    Ecotoxicol Environ Saf; 2016 Feb; 124():255-266. PubMed ID: 26546907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton.
    Peng Z; He S; Gong W; Xu F; Pan Z; Jia Y; Geng X; Du X
    BMC Plant Biol; 2018 Jun; 18(1):128. PubMed ID: 29925319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers.
    Rossi L; Zhang W; Ma X
    Environ Pollut; 2017 Oct; 229():132-138. PubMed ID: 28582676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance.
    Wang Y; Stevanato P; Lv C; Li R; Geng G
    J Agric Food Chem; 2019 May; 67(21):6056-6073. PubMed ID: 31070911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves.
    Jia H; Shao M; He Y; Guan R; Chu P; Jiang H
    PLoS One; 2015; 10(12):e0144808. PubMed ID: 26691228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.