BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29845088)

  • 1. Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons.
    Saran S; Gupta N; Roy S
    Neurophotonics; 2018 Apr; 5(2):025009. PubMed ID: 29845088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical optimization of high-frequency optogenetic spiking of red-shifted very fast-Chrimson-expressing neurons.
    Gupta N; Bansal H; Roy S
    Neurophotonics; 2019 Apr; 6(2):025002. PubMed ID: 31001567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Analysis of Low-power Bidirectional Optogenetic Control of High-frequency Neural Codes with Single Spike Resolution.
    Bansal H; Gupta N; Roy S
    Neuroscience; 2020 Nov; 449():165-188. PubMed ID: 32941934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses.
    Bansal H; Gupta N; Roy S
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229315
    [No Abstract]   [Full Text] [Related]  

  • 5. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: a computational study.
    Pyari G; Bansal H; Roy S
    J Physiol; 2022 Nov; 600(21):4653-4676. PubMed ID: 36068951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study.
    Bansal H; Pyari G; Roy S
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320791
    [No Abstract]   [Full Text] [Related]  

  • 8. Responses in fast-spiking interneuron firing rates to parameter variations associated with degradation of perineuronal nets.
    Hanssen KØ; Grødem S; Fyhn M; Hafting T; Einevoll GT; Ness TV; Halnes G
    J Comput Neurosci; 2023 May; 51(2):283-298. PubMed ID: 37058180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-domain order parameters for the burst and spike synchronization transitions of bursting neurons.
    Kim SY; Lim W
    Cogn Neurodyn; 2015 Aug; 9(4):411-21. PubMed ID: 26157514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of low-power, high-frequency and temporally precise optogenetic inhibition of spiking in NpHR, eNpHR3.0 and Jaws-expressing neurons.
    Bansal H; Gupta N; Roy S
    Biomed Phys Eng Express; 2020 May; 6(4):045011. PubMed ID: 33444272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos.
    Ronzitti E; Conti R; Zampini V; Tanese D; Foust AJ; Klapoetke N; Boyden ES; Papagiakoumou E; Emiliani V
    J Neurosci; 2017 Nov; 37(44):10679-10689. PubMed ID: 28972125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Implantable Ultrasonically Powered System for Optogenetic Stimulation with Power-Efficient Active Rectifier and Charge-Reuse Capability.
    Rashidi A; Laursen K; Hosseini S; Huynh HA; Moradi F
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1362-1371. PubMed ID: 31647446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos.
    Keppeler D; Merino RM; Lopez de la Morena D; Bali B; Huet AT; Gehrt A; Wrobel C; Subramanian S; Dombrowski T; Wolf F; Rankovic V; Neef A; Moser T
    EMBO J; 2018 Dec; 37(24):. PubMed ID: 30396994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors.
    Yu C; Cassar IR; Sambangi J; Grill WM
    J Neurosci; 2020 May; 40(22):4323-4334. PubMed ID: 32312888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Septohippocampal transmission from parvalbumin-positive neurons features rapid recovery from synaptic depression.
    Yi F; Garrett T; Deisseroth K; Haario H; Stone E; Lawrence JJ
    Sci Rep; 2021 Jan; 11(1):2117. PubMed ID: 33483520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Distinct Channelrhodopsin Variants Engages Different Patterns of Network Activity.
    Jun NY; Cardin JA
    eNeuro; 2020; 7(1):. PubMed ID: 31822522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Targeting-Optimized Chronos for Stimulation of the Auditory Pathway.
    Huet AT; Rankovic V
    Methods Mol Biol; 2021; 2191():261-285. PubMed ID: 32865750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utah optrode array customization using stereotactic brain atlases and 3-D CAD modeling for optogenetic neocortical interrogation in small rodents and nonhuman primates.
    Boutte RW; Merlin S; Yona G; Griffiths B; Angelucci A; Kahn I; Shoham S; Blair S
    Neurophotonics; 2017 Oct; 4(4):041502. PubMed ID: 28721358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effect of ultrasonic stimulation on the voltage-dependent potassium currents in rat hippocampal CA1 neurons.
    Cui K; Zhang S; Sun J; Zhang X; Ding C; Xu G
    BMC Neurosci; 2019 Jan; 20(1):3. PubMed ID: 30611209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-induced thermal grating spectroscopy based on femtosecond laser multi-photon absorption.
    Ruchkina M; Hot D; Ding P; Hosseinnia A; Bengtsson PE; Li Z; Bood J; Sahlberg AL
    Sci Rep; 2021 May; 11(1):9829. PubMed ID: 33972614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.