BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29845144)

  • 1. Continuous tuneable droplet ejection via pulsed surface acoustic wave jetting.
    Castro JO; Ramesan S; Rezk AR; Yeo LY
    Soft Matter; 2018 Jul; 14(28):5721-5727. PubMed ID: 29845144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Continuous tuneable droplet ejection via pulsed surface acoustic wave jetting.
    Castro JO; Ramesan S; Rezk AR; Yeo LY
    Soft Matter; 2018 Jul; 14(28):5937-5938. PubMed ID: 29926038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism and stability investigation of a nozzle-free droplet-on-demand acoustic ejector.
    Ning Y; Zhang M; Zhang H; Duan X; Yuan Y; Liu B; Pang W
    Analyst; 2021 Sep; 146(18):5650-5657. PubMed ID: 34378558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode Transition of Droplet Formation in a Semi-3D Flow-Focusing Microfluidic Droplet System.
    Wu Y; Qian X; Zhang M; Dong Y; Sun S; Wang X
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plug-and-actuate on demand: multimodal individual addressability of microarray plates using modular hybrid acoustic wave technology.
    Rezk AR; Ramesan S; Yeo LY
    Lab Chip; 2018 Jan; 18(3):406-411. PubMed ID: 29231220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic.
    Chang T; Mukherjee S; Watkins NN; Stobbe DM; Mays O; Baluyot EV; Pascall AJ; Tringe JW
    Sci Rep; 2020 Dec; 10(1):22325. PubMed ID: 33339896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Droplet Impact Velocity and Droplet Volume: Key Factors to Achieving High Cell Viability in Sub-Nanoliter Droplet-based Bioprinting.
    Ng WL; Huang X; Shkolnikov V; Goh GL; Suntornnond R; Yeong WY
    Int J Bioprint; 2022; 8(1):424. PubMed ID: 35187273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired Tip-Guidance Liquid Jetting and Droplet Emission at a Rotary Disk
    Wang T; Si Y; Li N; Dong Z; Jiang L
    ACS Nano; 2019 Nov; 13(11):13100-13108. PubMed ID: 31702896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inkjet vision measurement technique for high-frequency jetting.
    Kwon KS; Jang MH; Park HY; Ko HS
    Rev Sci Instrum; 2014 Jun; 85(6):065101. PubMed ID: 24985846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-Resolved Imaging Study of Jetting Dynamics during Laser Printing of Viscoelastic Alginate Solutions.
    Zhang Z; Xiong R; Mei R; Huang Y; Chrisey DB
    Langmuir; 2015 Jun; 31(23):6447-56. PubMed ID: 26011320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid jetting status inspection and accurate droplet volume measurement for a piezo drop-on-demand inkjet print head using a scanning mirror for display applications.
    Shin DY; Kim M
    Rev Sci Instrum; 2017 Feb; 88(2):025109. PubMed ID: 28249472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications.
    Tsai CS; Mao RW; Tsai SC; Shahverdi K; Zhu Y; Lin SK; Hsu YH; Boss G; Brenner M; Mahon S; Smaldone GC
    Micromachines (Basel); 2017; 8(2):. PubMed ID: 29250438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations to predict droplet size in ultrasonic atomisation.
    Rajan R; Pandit AB
    Ultrasonics; 2001 Jun; 39(4):235-55. PubMed ID: 11432434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spray characteristics of an ultrasonic microdroplet generator with a continuously variable operating frequency.
    Shan L; Cui M; Meacham JM
    J Acoust Soc Am; 2021 Aug; 150(2):1300. PubMed ID: 34470276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding droplet jetting on varying substrate for biological applications.
    Lee JM; Huang X; Goh GL; Tran T; Yeong WY
    Int J Bioprint; 2023; 9(5):758. PubMed ID: 37457927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Experiment of a Solder Paste Jetting System Driven by a Piezoelectric Stack.
    Gu S; Jiao X; Liu J; Yang Z; Jiang H; Lv Q
    Micromachines (Basel); 2016 Jun; 7(7):. PubMed ID: 30404284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Review of Surface Acoustic Wave-Enabled Acoustic Droplet Ejection Technology and Its Applications.
    Ning J; Lei Y; Hu H; Gai C
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation and Experiment on Droplet Formation and Separation for Needle-Type Micro-Liquid Jetting Dispenser.
    Lu S; Cao G; Zheng H; Li D; Shi M; Qi J
    Micromachines (Basel); 2018 Jun; 9(7):. PubMed ID: 30424263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-droplet microparticle washing and enrichment using surface acoustic wave-driven acoustic radiation force.
    Park J; Destgeer G; Kim H; Cho Y; Sung HJ
    Lab Chip; 2018 Sep; 18(19):2936-2945. PubMed ID: 30140820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-demand sample injection: combining acoustic actuation with a tear-drop shaped nozzle to generate droplets with precise spatial and temporal control.
    Brenker JC; Devendran C; Neild A; Alan T
    Lab Chip; 2020 Jan; 20(2):253-265. PubMed ID: 31854405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.