These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29845144)

  • 21. Droplet encapsulation of particles in different regimes and sorting of particle-encapsulating-droplets from empty droplets.
    Jayaprakash KS; Sen AK
    Biomicrofluidics; 2019 May; 13(3):034108. PubMed ID: 31123540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerodynamically assisted bio-jets: the development of a novel and direct non-electric field-driven methodology for engineering living organisms.
    Arumuganathar S; Irvine S; McEwan JR; Jayasinghe SN
    Biomed Mater; 2007 Jun; 2(2):158-68. PubMed ID: 18458450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SAW-driven droplet jetting technology in microfluidic: A review.
    Lei Y; Hu H
    Biomicrofluidics; 2020 Nov; 14(6):061505. PubMed ID: 33343781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pinch-off droplet generator using microscale gigahertz acoustics.
    Zhou Y; He M; Zhang H; Liu B; Sun C; Han Z; Duan X
    Lab Chip; 2023 Nov; 23(22):4860-4867. PubMed ID: 37867322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis.
    Leibacher I; Reichert P; Dual J
    Lab Chip; 2015 Jul; 15(13):2896-905. PubMed ID: 26037897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.
    Tsai SC; Tsai CS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1746-55. PubMed ID: 25004544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Centrifugal Step Emulsification: How Buoyancy Enables High Generation Rates of Monodisperse Droplets.
    Schulz M; von Stetten F; Zengerle R; Paust N
    Langmuir; 2019 Jul; 35(30):9809-9815. PubMed ID: 31283246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation and Experiment on Droplet Volume for the Needle-Type Piezoelectric Jetting Dispenser.
    Lu S; Chen X; Zheng H; Zhao Y; Long Y
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31540529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulations of surface acoustic wave interactions on a sessile droplet using a three-dimensional multiphase lattice Boltzmann model.
    Burnside SB; Pasieczynski K; Zarareh A; Mehmood M; Fu YQ; Chen B
    Phys Rev E; 2021 Oct; 104(4-2):045301. PubMed ID: 34781429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel method to produce small droplets from large nozzles.
    Castrejón-Pita AA; Castrejón-Pita JR; Martin GD
    Rev Sci Instrum; 2012 Nov; 83(11):115105. PubMed ID: 23206096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single microdroplet ejection using an ultrasonic longitudinal mode with a PZT/tapered glass capillary.
    Lee CH; Lal A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1514-22. PubMed ID: 15600097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-chip droplet production regimes using surface acoustic waves.
    Brenker JC; Collins DJ; Van Phan H; Alan T; Neild A
    Lab Chip; 2016 Apr; 16(9):1675-83. PubMed ID: 27045939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An on-demand femtoliter droplet dispensing system based on a gigahertz acoustic resonator.
    He M; Zhou Y; Cui W; Yang Y; Zhang H; Chen X; Pang W; Duan X
    Lab Chip; 2018 Aug; 18(17):2540-2546. PubMed ID: 30043817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet Ejection at Controlled Angles via Acoustofluidic Jetting.
    Connacher W; Orosco J; Friend J
    Phys Rev Lett; 2020 Oct; 125(18):184504. PubMed ID: 33196229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass spectrometric sampling of a liquid surface by nanoliter droplet generation from bursting bubbles and focused acoustic pulses: application to studies of interfacial chemistry.
    Thomas DA; Wang L; Goh B; Kim ES; Beauchamp JL
    Anal Chem; 2015 Mar; 87(6):3336-44. PubMed ID: 25699657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomization off thin water films generated by high-frequency substrate wave vibrations.
    Collins DJ; Manor O; Winkler A; Schmidt H; Friend JR; Yeo LY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056312. PubMed ID: 23214881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oscillatory bursting of gel fuel droplets in a reacting environment.
    Miglani A; Nandagopalan P; John J; Baek SW
    Sci Rep; 2017 Jun; 7(1):3088. PubMed ID: 28607397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel magnet-actuated droplet manipulation platform using a floating ferrofluid film.
    Yang C; Li G
    Sci Rep; 2017 Nov; 7(1):15705. PubMed ID: 29146931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On-demand droplet splitting using surface acoustic waves.
    Jung JH; Destgeer G; Ha B; Park J; Sung HJ
    Lab Chip; 2016 Aug; 16(17):3235-43. PubMed ID: 27435869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.