These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29845144)

  • 41. Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation.
    Collins DJ; Alan T; Helmerson K; Neild A
    Lab Chip; 2013 Aug; 13(16):3225-31. PubMed ID: 23784263
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deterministic bead-in-droplet ejection utilizing an integrated plug-in bead dispenser for single bead-based applications.
    Kim H; Choi IH; Lee S; Won DJ; Oh YS; Kwon D; Sung HJ; Jeon S; Kim J
    Sci Rep; 2017 Apr; 7():46260. PubMed ID: 28393911
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Emulsion templating of poly(lactic acid) particles: droplet formation behavior.
    Vladisavljević GT; Duncanson WJ; Shum HC; Weitz DA
    Langmuir; 2012 Sep; 28(36):12948-54. PubMed ID: 22860633
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical Investigation of Cell Encapsulation for Multiplexing Diagnostic Assays Using Novel Centrifugal Microfluidic Emulsification and Separation Platform.
    Ren Y; Leung WWF
    Micromachines (Basel); 2016 Jan; 7(2):. PubMed ID: 30407391
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Jetting microfluidics with size-sorting capability for single-cell protease detection.
    Jing T; Ramji R; Warkiani ME; Han J; Lim CT; Chen CH
    Biosens Bioelectron; 2015 Apr; 66():19-23. PubMed ID: 25460876
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acoustic resonance effects and cavitation in SAW aerosol generation.
    Roudini M; Manuel Rosselló J; Manor O; Ohl CD; Winkler A
    Ultrason Sonochem; 2023 Aug; 98():106530. PubMed ID: 37515911
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flight trajectory analysis of CuSn-droplets generated by laser drop on demand jetting, using stereoscopic high-speed imaging.
    Stein S; Zhao W; Hentschel O; Bickmann C; Roth S; Frick T; Schmidt M
    Opt Express; 2018 Apr; 26(8):10968-10980. PubMed ID: 29716025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interfacial jetting phenomena induced by focused surface vibrations.
    Tan MK; Friend JR; Yeo LY
    Phys Rev Lett; 2009 Jul; 103(2):024501. PubMed ID: 19659210
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Operational Modes and Speed Considerations of an Acoustic Droplet Dispenser for Mass Spectrometry.
    Liu C; Van Berkel GJ; Cox DM; Covey TR
    Anal Chem; 2020 Dec; 92(24):15818-15826. PubMed ID: 33063997
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Particle Detection in Free-Falling Nanoliter Droplets.
    Sturm F; Zieger V; Koltay P; Frejek D; Kartmann S
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet.
    Rogers PR; Friend JR; Yeo LY
    Lab Chip; 2010 Nov; 10(21):2979-85. PubMed ID: 20737070
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Swirl-like Acoustofluidic Stirring Facilitates Microscale Reactions in Sessile Droplets.
    Lan H; Qian J; Liu Y; Lu S; Zhang B; Huang L; Hu X; Zhang W
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421070
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Technologies That Enable Accurate and Precise Nano- to Milliliter-Scale Liquid Dispensing of Aqueous Reagents Using Acoustic Droplet Ejection.
    Sackmann EK; Majlof L; Hahn-Windgassen A; Eaton B; Bandzava T; Daulton J; Vandenbroucke A; Mock M; Stearns RG; Hinkson S; Datwani SS
    J Lab Autom; 2016 Feb; 21(1):166-77. PubMed ID: 26341100
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A versatile droplet on demand generator based on active pressure control.
    Albadi A; Zhang Y
    Rev Sci Instrum; 2020 Dec; 91(12):125005. PubMed ID: 33379958
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real time observation of binder jetting printing process using high-speed X-ray imaging.
    Parab ND; Barnes JE; Zhao C; Cunningham RW; Fezzaa K; Rollett AD; Sun T
    Sci Rep; 2019 Feb; 9(1):2499. PubMed ID: 30792454
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The fluid property dependency on micro-fluidic characteristics in the deposition process for microfabrication.
    Chau SW; Hsu KL; Chen SC; Liou TM; Shih KC
    Biosens Bioelectron; 2004 Jul; 20(1):133-8. PubMed ID: 15142586
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shaping and Controlled Fragmentation of Liquid Metal Droplets through Cavitation.
    Krivokorytov MS; Zeng Q; Lakatosh BV; Vinokhodov AY; Sidelnikov YV; Kompanets VO; Krivtsun VM; Koshelev KN; Ohl CD; Medvedev VV
    Sci Rep; 2018 Jan; 8(1):597. PubMed ID: 29330510
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-Throughput Triggered Merging of Surfactant-Stabilized Droplet Pairs Using Traveling Surface Acoustic Waves.
    Bussiere V; Vigne A; Link A; McGrath J; Srivastav A; Baret JC; Franke T
    Anal Chem; 2019 Nov; 91(21):13978-13985. PubMed ID: 31576738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.