These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29845155)

  • 1. Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots.
    Wang B; Mu Y; Yin H; Yang Z; Shi Y; Li J
    Nanoscale; 2018 Jun; 10(22):10650-10656. PubMed ID: 29845155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence.
    Mu Y; Wang N; Sun Z; Wang J; Li J; Yu J
    Chem Sci; 2016 Jun; 7(6):3564-3568. PubMed ID: 29997848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramolecular hydrogen bonds quench photoluminescence and enhance photocatalytic activity of carbon nanodots.
    Yang P; Zhao J; Zhang L; Li L; Zhu Z
    Chemistry; 2015 Jun; 21(23):8561-8. PubMed ID: 25925432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-Ultraviolet Emissive Carbon Nanodots.
    Song SY; Liu KK; Wei JY; Lou Q; Shang Y; Shan CX
    Nano Lett; 2019 Aug; 19(8):5553-5561. PubMed ID: 31276414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbogenic nanodots: photoluminescence and room-temperature ferromagnetism.
    Srivastava S; Gajbhiye NS
    Chemphyschem; 2011 Oct; 12(14):2624-32. PubMed ID: 21826777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent Effect on Structural Elucidation of Photoluminescent Graphitic Carbon Nanodots.
    Jalilov AS
    ACS Omega; 2020 Aug; 5(32):20409-20416. PubMed ID: 32832794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarity-dependent emission from hydroxyl-free carbon nanodots.
    Kanwal S; Mansoor F; Tu D; Li R; Zheng W; Lu S; Chen X
    Nanoscale; 2022 Sep; 14(36):13059-13065. PubMed ID: 36053169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly selective and sensitive detection of 2,4,6-trinitrophenol by using newly developed blue-green photoluminescent carbon nanodots.
    Liu ML; Chen BB; Liu ZX; Huang CZ
    Talanta; 2016 Dec; 161():875-880. PubMed ID: 27769497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Red/Near-Infrared-Emissive Carbon Nanodots with Multiphoton Excited Upconversion Fluorescence.
    Liu KK; Song SY; Sui LZ; Wu SX; Jing PT; Wang RQ; Li QY; Wu GR; Zhang ZZ; Yuan KJ; Shan CX
    Adv Sci (Weinh); 2019 Sep; 6(17):1900766. PubMed ID: 31508282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen-Doped Carbon Nanodots Produced by Femtosecond Laser Synthesis for Effective Fluorophores.
    Astafiev AA; Shakhov AM; Tskhovrebov AG; Shatov A; Gulin A; Shepel D; Nadtochenko VA
    ACS Omega; 2022 Mar; 7(8):6810-6823. PubMed ID: 35252675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing the Crystallite Size of Spherulites in PEO-Based Polymer Nanocomposites Mediated by Carbon Nanodots and Ag Nanoparticles.
    Abdullah RM; Aziz SB; Mamand SM; Hassan AQ; Hussein SA; Kadir MFZ
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31181863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials.
    Kwon W; Lee G; Do S; Joo T; Rhee SW
    Small; 2014 Feb; 10(3):506-13. PubMed ID: 24014253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiative and Non-Radiative Decay Pathways in Carbon Nanodots toward Bioimaging and Photodynamic Therapy.
    Kim Y; Park Y; Han S; Park W; Kim M; Kim K; Joo J; Hahn SK; Kwon W
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Methods to Study Photoluminescent Carbon Nanodots: Preparation, Photoluminescence Mechanism and Sensing.
    Qi BP; Bao L; Zhang ZL; Pang DW
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28372-28382. PubMed ID: 26906145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the Elemental Composition of Precursors from Amino Acids and Their Binary Mixtures on the Photoluminescent Intensity of Carbon Nanodots.
    Morita K; Kurusu S; Kodama H; Hirayama N
    Anal Sci; 2017; 33(12):1461-1464. PubMed ID: 29225241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Quantum Yield Fluorescent Carbon Nanodots for detection of Fe (III) Ions and Electrochemical Study of Quenching Mechanism.
    Arvapalli DM; Sheardy AT; Alapati KC; Wei J
    Talanta; 2020 Mar; 209():120538. PubMed ID: 31892023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption and emission of light in red emissive carbon nanodots.
    Soni N; Singh S; Sharma S; Batra G; Kaushik K; Rao C; Verma NC; Mondal B; Yadav A; Nandi CK
    Chem Sci; 2021 Jan; 12(10):3615-3626. PubMed ID: 34163635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmentally Benign Carbon Nanodots Prepared from Lemon for the Sensitive and Selective Fluorescence Detection of Fe(III) and Tannic Acid.
    Xavier SSJ; Kumar TR; Ranjani M; Yoo DJ; Archana V; Charles L; Annaraj J; Kumar GG
    J Fluoresc; 2019 May; 29(3):631-643. PubMed ID: 30993505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Doping Heteroatoms on the Optical Behaviors and Radical Scavenging Properties of Carbon Nanodots.
    Azami M; Wei J; Valizadehderakhshan M; Jayapalan A; Ayodele OO; Nowlin K
    J Phys Chem C Nanomater Interfaces; 2023 Apr; 127(15):7360-7370. PubMed ID: 37113457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiway data analysis approach toward understanding of photoluminescence and energy transfer in carbon nanodots.
    Bagheri S; Kompany-Zareh M; Karimpour T
    Luminescence; 2020 May; 35(3):385-392. PubMed ID: 31896165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.