BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29845324)

  • 1. Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography-tandem mass spectrometry.
    Lee JY; Wang H; Pyrgiotakis G; DeLoid GM; Zhang Z; Beltran-Huarac J; Demokritou P; Zhong W
    Anal Bioanal Chem; 2018 Sep; 410(24):6155-6164. PubMed ID: 29845324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of Glycolipids/Sphingolipids from Glycerophospholipids on TiO
    Huang Z; Wu Q; Lu H; Wang Y; Zhang Z
    Anal Chem; 2020 Aug; 92(16):11250-11259. PubMed ID: 32667194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and simple extraction of lipids from blood plasma and urine for liquid chromatography-tandem mass spectrometry.
    Bang DY; Byeon SK; Moon MH
    J Chromatogr A; 2014 Feb; 1331():19-26. PubMed ID: 24491523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line two-dimensional capillary strong anion exchange/reversed phase liquid chromatography-tandem mass spectrometry for comprehensive lipid analysis.
    Bang DY; Moon MH
    J Chromatogr A; 2013 Oct; 1310():82-90. PubMed ID: 24001943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-line high speed lipid extraction for nanoflow liquid chromatography-tandem mass spectrometry.
    Lee JY; Yang JS; Park SM; Byeon SK; Moon MH
    J Chromatogr A; 2016 Sep; 1464():12-20. PubMed ID: 27530420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of TiO
    Bourgeault A; Legros V; Gonnet F; Daniel R; Paquirissamy A; Bénatar C; Spalla O; Chanéac C; Renault JP; Pin S
    Environ Sci Pollut Res Int; 2017 May; 24(15):13474-13483. PubMed ID: 28390017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive proteomic analysis of mineral nanoparticles derived from human body fluids and analyzed by liquid chromatography-tandem mass spectrometry.
    Martel J; Young D; Young A; Wu CY; Chen CD; Yu JS; Young JD
    Anal Biochem; 2011 Nov; 418(1):111-25. PubMed ID: 21741946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly (N-vinylpyrrolidone) modification mitigates plasma protein corona formation on phosphomolybdate-based nanoparticles.
    Yu Y; Ghalandari B; Shen G; Wang L; Liu X; Wang A; Li S; Xie H; Ding X
    J Nanobiotechnology; 2021 Dec; 19(1):445. PubMed ID: 34949196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles.
    Partikel K; Korte R; Mulac D; Humpf HU; Langer K
    Beilstein J Nanotechnol; 2019; 10():1002-1015. PubMed ID: 31165027
    [No Abstract]   [Full Text] [Related]  

  • 12. A comprehensive analysis of liposomal biomolecular corona upon human plasma incubation: The evolution towards the lipid corona.
    La Barbera G; Capriotti AL; Caracciolo G; Cavaliere C; Cerrato A; Montone CM; Piovesana S; Pozzi D; Quagliarini E; Laganà A
    Talanta; 2020 Mar; 209():120487. PubMed ID: 31892008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of phenolic compounds in residual brewing yeast using matrix solid-phase dispersion extraction assisted by titanium dioxide nanoparticles.
    Gómez-Mejía E; Rosales-Conrado N; León-González ME; Madrid Y
    J Chromatogr A; 2019 Sep; 1601():255-265. PubMed ID: 31103200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How eluents define proteomic fingerprinting of protein corona on nanoparticles.
    Qiu L; Zhang Y; Wei G; Wang C; Zhu Y; Yang T; Chu Z; Gao P; Cheng G; Ma A; Kwan Wong Y; Zhang J; Xu C; Wang J; Tang H
    J Colloid Interface Sci; 2023 Oct; 648():497-510. PubMed ID: 37307606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of blood protein adsorption on cellular uptake of anatase TiO2 nanoparticles.
    Allouni ZE; Gjerdet NR; Cimpan MR; Høl PJ
    Int J Nanomedicine; 2015; 10():687-95. PubMed ID: 25632230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography-mass spectrometry and hydrophilic interaction liquid chromatography-mass spectrometry.
    Wolrab D; Chocholoušková M; Jirásko R; Peterka O; Holčapek M
    Anal Bioanal Chem; 2020 Apr; 412(10):2375-2388. PubMed ID: 32078000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-class multi-residue analysis of pesticides in edible oils by gas chromatography-tandem mass spectrometry using liquid-liquid extraction and enhanced matrix removal lipid cartridge cleanup.
    Zhao L; Szakas T; Churley M; Lucas D
    J Chromatogr A; 2019 Jan; 1584():1-12. PubMed ID: 30573312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of extracellular polymeric substances corona on TiO
    Du T; Meng R; Qian L; Wang Z; Li T; Wu L
    Water Res; 2024 Feb; 249():120990. PubMed ID: 38086209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a fast and simple method for the isolation of superparamagnetic iron oxide nanoparticles protein corona from protein-rich matrices.
    Soliman MG; Trinh DN; Ravagli C; Meleady P; Henry M; Movia D; Doumett S; Cappiello L; Prina-Mello A; Baldi G; Monopoli MP
    J Colloid Interface Sci; 2024 Apr; 659():503-519. PubMed ID: 38184993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative LC-MS based profiling approach to analyze lipid composition in tissue culture systems.
    Atilla-Gokcumen GE; Eggert US
    Methods Mol Biol; 2015; 1232():103-13. PubMed ID: 25331131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.