BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29845386)

  • 1. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.
    Li T; Zhou W; Bi H; Zhuang Y; Zhang T; Liu T
    Biotechnol Lett; 2018 Jul; 40(7):1057-1065. PubMed ID: 29845386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering E. coli for caffeic acid biosynthesis from renewable sugars.
    Zhang H; Stephanopoulos G
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3333-41. PubMed ID: 23179615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain.
    Huang Q; Lin Y; Yan Y
    Biotechnol Bioeng; 2013 Dec; 110(12):3188-96. PubMed ID: 23801069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.
    Zhang H; Stephanopoulos G
    Biotechnol J; 2016 Jul; 11(7):981-7. PubMed ID: 27168529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli.
    Kawaguchi H; Katsuyama Y; Danyao D; Kahar P; Nakamura-Tsuruta S; Teramura H; Wakai K; Yoshihara K; Minami H; Ogino C; Ohnishi Y; Kondo A
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5279-5290. PubMed ID: 28396925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous caffeic acid biosynthesis in Escherichia coli is affected by choice of tyrosine ammonia lyase and redox partners for bacterial Cytochrome P450.
    Haslinger K; Prather KLJ
    Microb Cell Fact; 2020 Feb; 19(1):26. PubMed ID: 32046741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway.
    Yao YF; Wang CS; Qiao J; Zhao GR
    Metab Eng; 2013 Sep; 19():79-87. PubMed ID: 23774671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate.
    Rodrigues JL; Araújo RG; Prather KL; Kluskens LD; Rodrigues LR
    Biotechnol J; 2015 Apr; 10(4):599-609. PubMed ID: 25641677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
    Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caffeic acid production from glucose using metabolically engineered Escherichia coli.
    Sakae K; Nonaka D; Kishida M; Hirata Y; Fujiwara R; Kondo A; Noda S; Tanaka T
    Enzyme Microb Technol; 2023 Mar; 164():110193. PubMed ID: 36621069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli W3110 to produce L-malate.
    Dong X; Chen X; Qian Y; Wang Y; Wang L; Qiao W; Liu L
    Biotechnol Bioeng; 2017 Mar; 114(3):656-664. PubMed ID: 27668703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli coculture for de novo production of esters derived of methyl-branched alcohols and multi-methyl branched fatty acids.
    Bracalente F; Sabatini M; Arabolaza A; Gramajo H
    Microb Cell Fact; 2022 Jan; 21(1):10. PubMed ID: 35033081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a novel anaerobic pathway in Escherichia coli for propionate production.
    Li J; Zhu X; Chen J; Zhao D; Zhang X; Bi C
    BMC Biotechnol; 2017 Apr; 17(1):38. PubMed ID: 28407739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of malate production through engineering of the periplasmic rTCA pathway in Escherichia coli.
    Guo L; Zhang F; Zhang C; Hu G; Gao C; Chen X; Liu L
    Biotechnol Bioeng; 2018 Jun; 115(6):1571-1580. PubMed ID: 29476618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered synthesis of rosmarinic acid in Escherichia coli resulting production of a new intermediate, caffeoyl-phenyllactate.
    Jiang J; Bi H; Zhuang Y; Liu S; Liu T; Ma Y
    Biotechnol Lett; 2016 Jan; 38(1):81-8. PubMed ID: 26337416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex.
    Lin Y; Yan Y
    Microb Cell Fact; 2012 Apr; 11():42. PubMed ID: 22475509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli.
    Wang Q; Liu X; Qi Q
    Appl Microbiol Biotechnol; 2014 May; 98(9):3923-31. PubMed ID: 24425304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol.
    Zhang H; Li Z; Pereira B; Stephanopoulos G
    Microb Cell Fact; 2015 Sep; 14():134. PubMed ID: 26369810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.