These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29845754)

  • 41. In vitro investigation on Ho:YAG laser-assisted bone ablation underwater.
    Zhang X; Chen C; Chen F; Zhan Z; Xie S; Ye Q
    Lasers Med Sci; 2016 Jul; 31(5):891-8. PubMed ID: 27056700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Lasers in dentistry. Part B--Interaction with biological tissues and the effect on the soft tissues of the oral cavity, the hard tissues of the tooth and the dental pulp].
    Moshonov J; Stabholz A; Leopold Y; Rosenberg I; Stabholz A
    Refuat Hapeh Vehashinayim (1993); 2001 Oct; 18(3-4):21-8, 107-8. PubMed ID: 11806042
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of ultrashort pulse ablation of gold in air and water by time-resolved experiments.
    Spellauge M; Doñate-Buendía C; Barcikowski S; Gökce B; Huber HP
    Light Sci Appl; 2022 Mar; 11(1):68. PubMed ID: 35322802
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Femtosecond lasers for high-precision orthopedic surgery.
    Ashforth SA; Oosterbeek RN; Bodley OLC; Mohr C; Aguergaray C; Simpson MC
    Lasers Med Sci; 2020 Aug; 35(6):1263-1270. PubMed ID: 31729610
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Femtosecond pulsed laser ablation of dental hard tissues with numerical control: a roughness and morphology study].
    Sun YC; Vorobyev A; Liu J; Guo C; Lü PJ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 Aug; 47(8):486-9. PubMed ID: 23141659
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ablation rate and micromorphological aspects with Nd:YAG picosecond pulsed laser on primary teeth.
    de F Z Lizarelli R; Moriyama LT; Bagnato VS
    Lasers Surg Med; 2002; 31(3):177-85. PubMed ID: 12224091
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of output energy and pulse repetition rate of the Er:YAG laser on dentin ablation.
    Igarashi A; Kato J; Takase Y; Hirai Y
    Photomed Laser Surg; 2008 Jun; 26(3):189-95. PubMed ID: 18588434
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi.
    Chan KF; Vassar GJ; Pfefer TJ; Teichman JM; Glickman RD; Weintraub ST; Welch AJ
    Lasers Surg Med; 1999; 25(1):22-37. PubMed ID: 10421883
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues.
    Kermani O; Lubatschowski H; Asshauer T; Ertmer W; Lukin A; Ermakov B; Krieglstein GK
    Lasers Surg Med; 1993; 13(5):537-42. PubMed ID: 8264324
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamics of pressure waves during femtosecond laser processing of glass.
    Ito Y; Shinomoto R; Otsu A; Nagato K; Sugita N
    Opt Express; 2019 Sep; 27(20):29158-29167. PubMed ID: 31684654
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C.
    Oraevsky AA; Jacques SL; Esenaliev RO; Tittel FK
    Lasers Surg Med; 1996; 18(3):231-40. PubMed ID: 8778517
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Femtosecond laser lithotripsy: feasibility and ablation mechanism.
    Qiu J; Teichman JM; Wang T; Neev J; Glickman RD; Chan KF; Milner TE
    J Biomed Opt; 2010; 15(2):028001. PubMed ID: 20459291
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of laser irradiation on tensile strength of bovine dentin.
    Tonami K; Takahashi H; Kato J; Nakano F; Nishimura F; Takagi Y; Kurosaki N
    Photomed Laser Surg; 2005 Jun; 23(3):278-83. PubMed ID: 15954815
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3D volume-ablation rate and thermal side effects with the Er:YAG and Nd:YAG laser.
    Mehl A; Kremers L; Salzmann K; Hickel R
    Dent Mater; 1997 Jul; 13(4):246-51. PubMed ID: 11696904
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A comparison of excimer laser (308 nm) ablation of the human lens nucleus in air and saline with a fiber optic delivery system.
    Martinez M; Maguen E; Bardenstein D; Duffy M; Yoser S; Papaioannou T; Grundfest W
    Refract Corneal Surg; 1992; 8(5):368-74. PubMed ID: 1450118
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser.
    Fried D; Featherstone JD; Le CQ; Fan K
    Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dental hard tissue modification and removal using sealed transverse excited atmospheric-pressure lasers operating at lambda=9.6 and 10.6 microm.
    Fried D; Ragadio J; Akrivou M; Featherstone JD; Murray MW; Dickenson KM
    J Biomed Opt; 2001 Apr; 6(2):231-8. PubMed ID: 11375734
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal Effects in the Ablation of Bovine Cortical Bone with Pulsed Laser Sources.
    Canteli D; Muñoz-García C; Morales M; Márquez A; Lauzurica S; Arregui J; Lazkoz A; Molpeceres C
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31505836
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width.
    Sun H; Han M; Niemz MH; Bille JF
    Lasers Surg Med; 2007 Sep; 39(8):654-8. PubMed ID: 17886278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.