These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29845857)

  • 21. The wettability of gas bubbles: from macro behavior to nano structures to applications.
    Huang C; Guo Z
    Nanoscale; 2018 Nov; 10(42):19659-19672. PubMed ID: 30335112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid surface design for robust superhydrophobicity.
    Dash S; Alt MT; Garimella SV
    Langmuir; 2012 Jun; 28(25):9606-15. PubMed ID: 22630787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Underwater drag-reducing effect of superhydrophobic submarine model.
    Zhang S; Ouyang X; Li J; Gao S; Han S; Liu L; Wei H
    Langmuir; 2015; 31(1):587-93. PubMed ID: 25496725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superaerophilic Wedge-Shaped Channels with Precovered Air Film for Efficient Subaqueous Bubbles/Jet Transportation and Continuous Oxygen Supplementation.
    Liu Z; Zhang H; Han Y; Huang L; Chen Y; Liu J; Wang X; Liu X; Ling S
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23808-23814. PubMed ID: 31252508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinspired Two-Dimensional Structure with Asymmetric Wettability Barriers for Unidirectional and Long-Distance Gas Bubble Delivery Underwater.
    Xiao X; Li S; Zhu X; Xiao X; Zhang C; Jiang F; Yu C; Jiang L
    Nano Lett; 2021 Mar; 21(5):2117-2123. PubMed ID: 33599507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-Driving Underwater "Aerofluidics".
    Yong J; Peng Y; Wang X; Li J; Hu Y; Chu J; Wu D
    Adv Sci (Weinh); 2023 Jul; 10(21):e2301175. PubMed ID: 37114841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superwetting Electrodes for Gas-Involving Electrocatalysis.
    Xu W; Lu Z; Sun X; Jiang L; Duan X
    Acc Chem Res; 2018 Jul; 51(7):1590-1598. PubMed ID: 29883085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of Superhydrophobic Surfaces with Controllable Electrical Conductivity and Water Adhesion.
    Ye L; Guan J; Li Z; Zhao J; Ye C; You J; Li Y
    Langmuir; 2017 Feb; 33(6):1368-1374. PubMed ID: 28052672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimuli-Responsive Liquid-Crystal-Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion.
    Rather AM; Xu Y; Chang Y; Dupont RL; Borbora A; Kara UI; Fang JC; Mamtani R; Zhang M; Yao Y; Adera S; Bao X; Manna U; Wang X
    Adv Mater; 2022 Apr; 34(14):e2110085. PubMed ID: 35089623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recoverable underwater superhydrophobicity from a fully wetted state via dynamic air spreading.
    Zhao Y; Xu Z; Gong L; Yang S; Zeng H; He C; Ge D; Yang L
    iScience; 2021 Dec; 24(12):103427. PubMed ID: 34877492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile construction of gas diode membrane towards in situ gas consumption via coupling two chemical reactions.
    Gao A; Fan H; Zhang G; Zhao S; Cui J; Yan Y
    J Colloid Interface Sci; 2019 Dec; 557():282-290. PubMed ID: 31525665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction.
    Lee C; Kim CJ
    Phys Rev Lett; 2011 Jan; 106(1):014502. PubMed ID: 21231747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrafast Self-Healing Superhydrophobic Surface for Underwater Drag Reduction.
    Sun P; Feng X; Tian G; Zhang X; Chu J
    Langmuir; 2022 Sep; 38(35):10875-10885. PubMed ID: 36001007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct Observation of Gas Meniscus Formation on a Superhydrophobic Surface.
    Eriksson M; Tuominen M; Järn M; Claesson PM; Wallqvist V; Butt HJ; Vollmer D; Kappl M; Schoelkopf J; Gane PAC; Teisala H; Swerin A
    ACS Nano; 2019 Feb; 13(2):2246-2252. PubMed ID: 30707561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Underwater manipulation of oil droplets and bubbles on superhydrophobic surfaces via switchable adhesion.
    Gao D; Cao J; Guo Z
    Chem Commun (Camb); 2019 Mar; 55(23):3394-3397. PubMed ID: 30821793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional superhydrophobic surfaces made of Janus micropillars.
    Mammen L; Bley K; Papadopoulos P; Schellenberger F; Encinas N; Butt HJ; Weiss CK; Vollmer D
    Soft Matter; 2015 Jan; 11(3):506-15. PubMed ID: 25415839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.
    Prakash S; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.