These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29845861)

  • 1. Real-Time In Situ Secondary Structure Analysis of Protein Monolayer with Mid-Infrared Plasmonic Nanoantennas.
    Etezadi D; Warner JB; Lashuel HA; Altug H
    ACS Sens; 2018 Jun; 3(6):1109-1117. PubMed ID: 29845861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoplasmonic mid-infrared biosensor for
    Etezadi D; Warner Iv JB; Ruggeri FS; Dietler G; Lashuel HA; Altug H
    Light Sci Appl; 2017 Aug; 6(8):e17029. PubMed ID: 30167280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas.
    Semenyshyn R; Hentschel M; Stanglmair C; Teutsch T; Tarin C; Pacholski C; Giessen H; Neubrech F
    Nano Lett; 2019 Jan; 19(1):1-7. PubMed ID: 30071729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared Plasmonic Biosensor for Real-Time and Label-Free Monitoring of Lipid Membranes.
    Limaj O; Etezadi D; Wittenberg NJ; Rodrigo D; Yoo D; Oh SH; Altug H
    Nano Lett; 2016 Feb; 16(2):1502-8. PubMed ID: 26761392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant Plasmonic Nanoslits Enable in Vitro Observation of Single-Monolayer Collagen-Peptide Dynamics.
    Semenyshyn R; Hentschel M; Huck C; Vogt J; Weiher F; Giessen H; Neubrech F
    ACS Sens; 2019 Aug; 4(8):1966-1972. PubMed ID: 31134801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions.
    Cieplak AS
    PLoS One; 2017; 12(9):e0180905. PubMed ID: 28922400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial extent of plasmonic enhancement of vibrational signals in the infrared.
    Neubrech F; Beck S; Glaser T; Hentschel M; Giessen H; Pucci A
    ACS Nano; 2014 Jun; 8(6):6250-8. PubMed ID: 24811345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization approaches can affect protein dynamics: a surface-enhanced infrared spectroscopic study on lipid-protein interactions.
    Fallah MA; Hauser K
    Biomater Sci; 2019 Aug; 7(8):3204-3212. PubMed ID: 31147655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EC-QCL mid-IR transmission spectroscopy for monitoring dynamic changes of protein secondary structure in aqueous solution on the example of β-aggregation in alcohol-denaturated α-chymotrypsin.
    Alcaráz MR; Schwaighofer A; Goicoechea H; Lendl B
    Anal Bioanal Chem; 2016 Jun; 408(15):3933-41. PubMed ID: 27007739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-synuclein multistate folding thermodynamics: implications for protein misfolding and aggregation.
    Ferreon AC; Deniz AA
    Biochemistry; 2007 Apr; 46(15):4499-509. PubMed ID: 17378587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Following the Chemical Immobilization of Membrane Proteins on Plasmonic Nanoantennas Using Infrared Spectroscopy.
    Omeis F; Santos Seica AF; Bernard R; Javahiraly N; Majjad H; Moss D; Hellwig P
    ACS Sens; 2020 Jul; 5(7):2191-2197. PubMed ID: 32586089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas.
    Adato R; Altug H
    Nat Commun; 2013; 4():2154. PubMed ID: 23877168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.
    Chong SH; Ham S
    Acc Chem Res; 2015 Apr; 48(4):956-65. PubMed ID: 25844814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.
    Rodrigo D; Limaj O; Janner D; Etezadi D; García de Abajo FJ; Pruneri V; Altug H
    Science; 2015 Jul; 349(6244):165-8. PubMed ID: 26160941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free detection of protein-protein interactions at the GaAs/water interface through surface infrared spectroscopy: discrimination between specific and nonspecific interactions by using secondary structure analysis.
    Onodera K; Hirano-Iwata A; Miyamoto K; Kimura Y; Kataoka M; Shinohara Y; Niwano M
    Langmuir; 2007 Nov; 23(24):12287-92. PubMed ID: 17949123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials.
    Cheng F; Yang X; Gao J
    Sci Rep; 2015 Sep; 5():14327. PubMed ID: 26388404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the role of hydrogen peroxide in α-synuclein aggregation using an ultrasensitive nanoplasmonic probe.
    Xu Y; Li K; Qin W; Zhu B; Zhou Z; Shi J; Wang K; Hu J; Fan C; Li D
    Anal Chem; 2015 Feb; 87(3):1968-73. PubMed ID: 25590377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-infrared spectroscopy for protein analysis: potential and challenges.
    López-Lorente ÁI; Mizaikoff B
    Anal Bioanal Chem; 2016 Apr; 408(11):2875-89. PubMed ID: 26879650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural remodeling during amyloidogenesis of physiological Nα-acetylated α-synuclein.
    Gallea JI; Sarroukh R; Yunes-Quartino P; Ruysschaert JM; Raussens V; Celej MS
    Biochim Biophys Acta; 2016 May; 1864(5):501-10. PubMed ID: 26845568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.