These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 29845903)

  • 1. What is the effect of diet and/or exercise interventions on behavioural compensation in non-exercise physical activity and related energy expenditure of free-living adults? A systematic review.
    Silva AM; Júdice PB; Carraça EV; King N; Teixeira PJ; Sardinha LB
    Br J Nutr; 2018 Jun; 119(12):1327-1345. PubMed ID: 29845903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interindividual variability in metabolic adaptation of non-exercise activity thermogenesis after a 1-year weight loss intervention in former elite athletes.
    Nunes CL; Rosa GB; Jesus F; Heymsfield SB; Minderico CS; Martins P; Sardinha LB; Silva AM
    Eur J Sport Sci; 2023 Aug; 23(8):1761-1770. PubMed ID: 36377398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise Training and Energy Expenditure following Weight Loss.
    Hunter GR; Fisher G; Neumeier WH; Carter SJ; Plaisance EP
    Med Sci Sports Exerc; 2015 Sep; 47(9):1950-7. PubMed ID: 25606816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does increased prescribed exercise alter non-exercise physical activity/energy expenditure in healthy adults? A systematic review.
    Washburn RA; Lambourne K; Szabo AN; Herrmann SD; Honas JJ; Donnelly JE
    Clin Obes; 2014 Feb; 4(1):1-20. PubMed ID: 25425128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structured, aerobic exercise reduces fat mass and is partially compensated through energy intake but not energy expenditure in women.
    Myers A; Dalton M; Gibbons C; Finlayson G; Blundell J
    Physiol Behav; 2019 Feb; 199():56-65. PubMed ID: 30414399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interindividual variability in energy intake and expenditure during a weight loss intervention.
    Nunes CL; Jesus F; Rosa GB; Marianito M; Francisco R; Bosy-Westphal A; Minderico CS; Martins P; Sardinha LB; Silva AM
    Appetite; 2024 Feb; 193():107162. PubMed ID: 38101517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of mechanisms (E-MECHANIC) of exercise-induced weight compensation: study protocol for a randomized controlled trial.
    Myers CA; Johnson WD; Earnest CP; Rood JC; Tudor-Locke C; Johannsen NM; Cocreham S; Harris M; Church TS; Martin CK
    Trials; 2014 Jun; 15():212. PubMed ID: 24906459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight.
    Rosenbaum M; Hirsch J; Gallagher DA; Leibel RL
    Am J Clin Nutr; 2008 Oct; 88(4):906-12. PubMed ID: 18842775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of exercise session timing on weight loss and components of energy balance: midwest exercise trial 2.
    Willis EA; Creasy SA; Honas JJ; Melanson EL; Donnelly JE
    Int J Obes (Lond); 2020 Jan; 44(1):114-124. PubMed ID: 31289334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of exercise and diet restriction on daily energy expenditure.
    Poehlman ET; Melby CL; Goran MI
    Sports Med; 1991 Feb; 11(2):78-101. PubMed ID: 2017606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy compensation after sprint- and high-intensity interval training.
    Schubert MM; Palumbo E; Seay RF; Spain KK; Clarke HE
    PLoS One; 2017; 12(12):e0189590. PubMed ID: 29244836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of a combined heart rate and motion sensor for assessing energy expenditure in free-living adults during a double-blind crossover caffeine trial using doubly labeled water as the reference method.
    Silva AM; Santos DA; Matias CN; Júdice PB; Magalhães JP; Ekelund U; Sardinha LB
    Eur J Clin Nutr; 2015 Jan; 69(1):20-7. PubMed ID: 24690589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of increased energy intake and/or physical activity on energy expenditure in young healthy men.
    Goran MI; Calles-Escandon J; Poehlman ET; O'Connell M; Danforth E
    J Appl Physiol (1985); 1994 Jul; 77(1):366-72. PubMed ID: 7961258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance and aerobic exercises do not affect post-exercise energy compensation in normal weight men and women.
    Cadieux S; McNeil J; Lapierre MP; Riou MÈ; Doucet É
    Physiol Behav; 2014 May; 130():113-9. PubMed ID: 24726390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Free-Living Energy Expenditure by Heart Rate and Movement Sensing: A Doubly-Labelled Water Study.
    Brage S; Westgate K; Franks PW; Stegle O; Wright A; Ekelund U; Wareham NJ
    PLoS One; 2015; 10(9):e0137206. PubMed ID: 26349056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of Low Energy Availability on Nonexercise Activity Thermogenesis and Physical Activity Behavior in Recreationally Trained Adults.
    Martin A; Hofmann H; Drenowatz C; Wallmann-Sperlich B; Sperlich B; Koehler K
    Int J Sport Nutr Exerc Metab; 2021 Jul; 31(4):329-336. PubMed ID: 34021097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The energy expenditure of postmenopausal women classified as restrained or unrestrained eaters.
    Bathalon GP; Hays NP; McCrory MA; Vinken AG; Tucker KL; Greenberg AS; Castaneda C; Roberts SB
    Eur J Clin Nutr; 2001 Dec; 55(12):1059-67. PubMed ID: 11781672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensatory mechanisms from different exercise intensities in type 2 diabetes: a secondary analysis of a 1-year randomized controlled trial.
    Correia IR; Hetherington-Rauth M; Magalhães JP; Júdice PB; Rosa GB; Henriques-Neto D; Manas A; Ara I; Silva AM; Sardinha LB
    Acta Diabetol; 2023 May; 60(5):645-654. PubMed ID: 36729308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of 12 Wearable Devices for Estimating Physical Activity Energy Expenditure Using a Metabolic Chamber and the Doubly Labeled Water Method: Validation Study.
    Murakami H; Kawakami R; Nakae S; Yamada Y; Nakata Y; Ohkawara K; Sasai H; Ishikawa-Takata K; Tanaka S; Miyachi M
    JMIR Mhealth Uhealth; 2019 Aug; 7(8):e13938. PubMed ID: 31376273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.