These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29846507)

  • 1. Genetic differentiation in life history traits and thermal stress performance across a heterogeneous dune landscape in Arabidopsis lyrata.
    Wos G; Willi Y
    Ann Bot; 2018 Aug; 122(3):473-484. PubMed ID: 29846507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weak impact of fine-scale landscape heterogeneity on evolutionary potential in Arabidopsis lyrata.
    Paccard A; Vance M; Willi Y
    J Evol Biol; 2013 Nov; 26(11):2331-40. PubMed ID: 23980569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-stress resistance and tolerance along a latitudinal cline in North American Arabidopsis lyrata.
    Wos G; Willi Y
    PLoS One; 2015; 10(6):e0131808. PubMed ID: 26110428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal acclimation in Arabidopsis lyrata: genotypic costs and transcriptional changes.
    Wos G; Willi Y
    J Evol Biol; 2018 Jan; 31(1):123-135. PubMed ID: 29134788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization.
    Mattila TM; Aalto EA; Toivainen T; Niittyvuopio A; Piltonen S; Kuittinen H; Savolainen O
    Mol Ecol; 2016 Jan; 25(2):581-97. PubMed ID: 26600237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic changes in flowering and morphology in response to adaptation to a high-latitude environment in Arabidopsis lyrata.
    Quilot-Turion B; Leppälä J; Leinonen PH; Waldmann P; Savolainen O; Kuittinen H
    Ann Bot; 2013 May; 111(5):957-68. PubMed ID: 23519836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.
    Postma FM; Ågren J
    Mol Ecol; 2015 Feb; 24(4):785-97. PubMed ID: 25640699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latitudinal trait variation and responses to drought in Arabidopsis lyrata.
    Paccard A; Fruleux A; Willi Y
    Oecologia; 2014 Jun; 175(2):577-87. PubMed ID: 24705694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex genetic effects on early vegetative development shape resource allocation differences between Arabidopsis lyrata populations.
    Remington DL; Leinonen PH; Leppälä J; Savolainen O
    Genetics; 2013 Nov; 195(3):1087-102. PubMed ID: 23979581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian Rhythms and Reproductive Phenology Covary in a Natural Plant Population.
    Salmela MJ; McMinn RL; Guadagno CR; Ewers BE; Weinig C
    J Biol Rhythms; 2018 Jun; 33(3):245-254. PubMed ID: 29589511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis.
    He H; de Souza Vidigal D; Snoek LB; Schnabel S; Nijveen H; Hilhorst H; Bentsink L
    J Exp Bot; 2014 Dec; 65(22):6603-15. PubMed ID: 25240065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive value of phenological traits in stressful environments: predictions based on seed production and laboratory natural selection.
    Brachi B; Aimé C; Glorieux C; Cuguen J; Roux F
    PLoS One; 2012; 7(3):e32069. PubMed ID: 22403624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the adjustment between environment and life history in annuals: lessons from a geographically-explicit approach in Arabidopsis thaliana.
    Manzano-Piedras E; Marcer A; Alonso-Blanco C; Picó FX
    PLoS One; 2014; 9(2):e87836. PubMed ID: 24498381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations.
    Verhoeven KJ; Poorter H; Nevo E; Biere A
    Mol Ecol; 2008 Jul; 17(14):3416-24. PubMed ID: 18573164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of epigenetic variation to adaptation in Arabidopsis.
    Schmid MW; Heichinger C; Coman Schmid D; Guthörl D; Gagliardini V; Bruggmann R; Aluri S; Aquino C; Schmid B; Turnbull LA; Grossniklaus U
    Nat Commun; 2018 Oct; 9(1):4446. PubMed ID: 30361538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata.
    Leinonen PH; Remington DL; Leppälä J; Savolainen O
    Mol Ecol; 2013 Feb; 22(3):709-23. PubMed ID: 22724431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying genetics of adaptive variation in model organisms: flowering time variation in Arabidopsis lyrata.
    Riihimäki M; Podolsky R; Kuittinen H; Koelewijn H; Savolainen O
    Genetica; 2005 Feb; 123(1-2):63-74. PubMed ID: 15881681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similarity in G matrix structure among natural populations of Arabidopsis lyrata.
    Puentes A; Granath G; Ågren J
    Evolution; 2016 Oct; 70(10):2370-2386. PubMed ID: 27501272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate genetic analysis of plant responses to water deficit and high temperature revealed contrasting adaptive strategies.
    Vasseur F; Bontpart T; Dauzat M; Granier C; Vile D
    J Exp Bot; 2014 Dec; 65(22):6457-69. PubMed ID: 25246443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cline in seed dormancy helps conserve the environment experienced during reproduction across the range of Arabidopsis thaliana.
    Burghardt LT; Metcalf CJ; Donohue K
    Am J Bot; 2016 Jan; 103(1):47-59. PubMed ID: 26744481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.