These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 29846565)

  • 1. Gut Microbiota: FFAR Reaching Effects on Islets.
    Priyadarshini M; Navarro G; Layden BT
    Endocrinology; 2018 Jun; 159(6):2495-2505. PubMed ID: 29846565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut feelings in the islets: The role of the gut microbiome and the FFA2 and FFA3 receptors for short chain fatty acids on β-cell function and metabolic regulation.
    Teyani R; Moniri NH
    Br J Pharmacol; 2023 Dec; 180(24):3113-3129. PubMed ID: 37620991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis.
    Fuller M; Priyadarshini M; Gibbons SM; Angueira AR; Brodsky M; Hayes MG; Kovatcheva-Datchary P; Bäckhed F; Gilbert JA; Lowe WL; Layden BT
    Am J Physiol Endocrinol Metab; 2015 Nov; 309(10):E840-51. PubMed ID: 26394664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCFA Receptors in Pancreatic β Cells: Novel Diabetes Targets?
    Priyadarshini M; Wicksteed B; Schiltz GE; Gilchrist A; Layden BT
    Trends Endocrinol Metab; 2016 Sep; 27(9):653-664. PubMed ID: 27091493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controversial Roles of Gut Microbiota-Derived Short-Chain Fatty Acids (SCFAs) on Pancreatic β-Cell Growth and Insulin Secretion.
    Liu JL; Segovia I; Yuan XL; Gao ZH
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32019155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FFA2 and FFA3 in Metabolic Regulation.
    Tang C; Offermanns S
    Handb Exp Pharmacol; 2017; 236():205-220. PubMed ID: 27757760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free fatty acid receptors and their role in regulation of energy metabolism.
    Hara T; Kimura I; Inoue D; Ichimura A; Hirasawa A
    Rev Physiol Biochem Pharmacol; 2013; 164():77-116. PubMed ID: 23625068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agonism and allosterism: the pharmacology of the free fatty acid receptors FFA2 and FFA3.
    Milligan G; Stoddart LA; Smith NJ
    Br J Pharmacol; 2009 Sep; 158(1):146-53. PubMed ID: 19719777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free Fatty Acid Receptors and Cancer: From Nutrition to Pharmacology.
    Hopkins MM; Meier KE
    Handb Exp Pharmacol; 2017; 236():233-251. PubMed ID: 27757756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free Fatty Acid Receptors in Health and Disease.
    Kimura I; Ichimura A; Ohue-Kitano R; Igarashi M
    Physiol Rev; 2020 Jan; 100(1):171-210. PubMed ID: 31487233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes.
    Tang C; Ahmed K; Gille A; Lu S; Gröne HJ; Tunaru S; Offermanns S
    Nat Med; 2015 Feb; 21(2):173-7. PubMed ID: 25581519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemogenetics defines a short-chain fatty acid receptor gut-brain axis.
    Barki N; Bolognini D; Börjesson U; Jenkins L; Riddell J; Hughes DI; Ulven T; Hudson BD; Ulven ER; Dekker N; Tobin AB; Milligan G
    Elife; 2022 Mar; 11():. PubMed ID: 35229717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FFAR from the Gut Microbiome Crowd: SCFA Receptors in T1D Pathology.
    Priyadarshini M; Lednovich K; Xu K; Gough S; Wicksteed B; Layden BT
    Metabolites; 2021 May; 11(5):. PubMed ID: 34064625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FFAR out new targets for diabetes.
    Prentice KJ; Wheeler MB
    Cell Metab; 2015 Mar; 21(3):353-4. PubMed ID: 25738452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-Chain Fatty Acid Receptors and Cardiovascular Function.
    Lymperopoulos A; Suster MS; Borges JI
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taste Receptors Function as Nutrient Sensors in Pancreatic Islets: A Potential Therapeutic Target for Diabetes.
    Zhang X; Ostrov DA; Tian H
    Endocr Metab Immune Disord Drug Targets; 2023; 23(9):1137-1150. PubMed ID: 36582067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gut microbiome production of short-chain fatty acids and obesity in children.
    Murugesan S; Nirmalkar K; Hoyo-Vadillo C; García-Espitia M; Ramírez-Sánchez D; García-Mena J
    Eur J Clin Microbiol Infect Dis; 2018 Apr; 37(4):621-625. PubMed ID: 29196878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs.
    Kotarsky K; Nilsson NE; Flodgren E; Owman C; Olde B
    Biochem Biophys Res Commun; 2003 Feb; 301(2):406-10. PubMed ID: 12565875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pleiotropic effects of fatty acids on pancreatic beta-cells.
    Haber EP; Ximenes HM; Procópio J; Carvalho CR; Curi R; Carpinelli AR
    J Cell Physiol; 2003 Jan; 194(1):1-12. PubMed ID: 12447984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G-protein-coupled receptor 40 (GPR40) expression and its regulation in human pancreatic islets: the role of type 2 diabetes and fatty acids.
    Del Guerra S; Bugliani M; D'Aleo V; Del Prato S; Boggi U; Mosca F; Filipponi F; Lupi R
    Nutr Metab Cardiovasc Dis; 2010 Jan; 20(1):22-5. PubMed ID: 19758793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.