These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29846858)

  • 1. An Inverse Problem: Trappers Drove Hares to Eat Lynx.
    Deng B
    Acta Biotheor; 2018 Sep; 66(3):213-242. PubMed ID: 29846858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predators choose prey over prey habitats: evidence from a lynx-hare system.
    Keim JL; DeWitt PD; Lele SR
    Ecol Appl; 2011 Jun; 21(4):1011-6. PubMed ID: 21774407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geographical gradients in diet affect population dynamics of Canada lynx.
    Roth JD; Marshall JD; Murray DL; Nickerson DM; Steury TD
    Ecology; 2007 Nov; 88(11):2736-43. PubMed ID: 18051641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predator-prey systems depend on a prey refuge.
    Chivers WJ; Gladstone W; Herbert RD; Fuller MM
    J Theor Biol; 2014 Nov; 360():271-278. PubMed ID: 25058806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the assessment of predator functional responses by considering alternate prey and predator interactions.
    Chan K; Boutin S; Hossie TJ; Krebs CJ; O'Donoghue M; Murray DL
    Ecology; 2017 Jul; 98(7):1787-1796. PubMed ID: 28369822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America.
    Krebs CJ; Boonstra R; Boutin S
    J Anim Ecol; 2018 Jan; 87(1):87-100. PubMed ID: 28636751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prey switching as a means of enhancing persistence in predators at the trailing southern edge.
    Peers MJ; Wehtje M; Thornton DH; Murray DL
    Glob Chang Biol; 2014 Apr; 20(4):1126-35. PubMed ID: 24353147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When death comes: linking predator-prey activity patterns to timing of mortality to understand predation risk.
    Shiratsuru S; Studd EK; Boutin S; Peers MJL; Majchrzak YN; Menzies AK; Derbyshire R; Jung TS; Krebs CJ; Boonstra R; Murray DL
    Proc Biol Sci; 2023 May; 290(1999):20230661. PubMed ID: 37192667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population regulation in snowshoe hare and Canadian lynx: asymmetric food web configurations between hare and lynx.
    Stenseth NC; Falck W; Bjornstad ON; Krebs CJ
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5147-52. PubMed ID: 9144205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking climate change to population cycles of hares and lynx.
    Yan C; Stenseth NC; Krebs CJ; Zhang Z
    Glob Chang Biol; 2013 Nov; 19(11):3263-71. PubMed ID: 23846828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing species distribution modeling by characterizing predator-prey interactions.
    Trainor AM; Schmitz OJ; Ivan JS; Shenk TM
    Ecol Appl; 2014 Jan; 24(1):204-16. PubMed ID: 24640545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of habitat fragmentation on cyclic population dynamics: a numerical study.
    Strohm S; Tyson R
    Bull Math Biol; 2009 Aug; 71(6):1323-48. PubMed ID: 19352778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares.
    Sheriff MJ; Krebs CJ; Boonstra R
    J Anim Ecol; 2009 Nov; 78(6):1249-58. PubMed ID: 19426257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients.
    Elmhagen B; Ludwig G; Rushton SP; Helle P; Lindén H
    J Anim Ecol; 2010 Jul; 79(4):785-94. PubMed ID: 20337755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Prey Presence and Scale on Bobcat Resource Selection during Winter.
    Bled F; Summers S; Martell D; Petroelje TR; Beyer DE; Belant JL
    PLoS One; 2015; 10(11):e0143347. PubMed ID: 26581103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of predator maturation delay and functional response in determining the periodicity of predator-prey cycles.
    Wang H; Nagy JD; Gilg O; Kuang Y
    Math Biosci; 2009 Sep; 221(1):1-10. PubMed ID: 19563815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From process to pattern: how fluctuating predation risk impacts the stress axis of snowshoe hares during the 10-year cycle.
    Sheriff MJ; Krebs CJ; Boonstra R
    Oecologia; 2011 Jul; 166(3):593-605. PubMed ID: 21246218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hair cortisol as a reliable indicator of stress physiology in the snowshoe hare: Influence of body region, sex, season, and predator-prey population dynamics.
    Lavergne SG; Peers MJL; Mastromonaco G; Majchrzak YN; Nair A; Boutin S; Boonstra R
    Gen Comp Endocrinol; 2020 Aug; 294():113471. PubMed ID: 32234297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of high predation risk on genome-wide hippocampal gene expression in snowshoe hares.
    Lavergne SG; McGowan PO; Krebs CJ; Boonstra R
    Oecologia; 2014 Nov; 176(3):613-24. PubMed ID: 25234370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioural adjustments of predators and prey to wind speed in the boreal forest.
    Studd EK; Peers MJL; Menzies AK; Derbyshire R; Majchrzak YN; Seguin JL; Murray DL; Dantzer B; Lane JE; McAdam AG; Humphries MM; Boutin S
    Oecologia; 2022 Dec; 200(3-4):349-358. PubMed ID: 36175692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.