These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29846858)

  • 21. Stochastic resonance in climate reddening increases the risk of cyclic ecosystem extinction via phase-tipping.
    Alkhayuon H; Marley J; Wieczorek S; Tyson RC
    Glob Chang Biol; 2023 Jun; 29(12):3347-3363. PubMed ID: 37021593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Seasonal Effects of Habitat on Sources and Rates of Snowshoe Hare Predation in Alaskan Boreal Forests.
    Feierabend D; Kielland K
    PLoS One; 2015; 10(12):e0143543. PubMed ID: 26717577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impact of variable predation risk on stress in snowshoe hares over the cycle in North America's boreal forest: adjusting to change.
    Lavergne SG; Krebs CJ; Kenney AJ; Boutin S; Murray D; Palme R; Boonstra R
    Oecologia; 2021 Sep; 197(1):71-88. PubMed ID: 34435235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk.
    Sheriff MJ; Krebs CJ; Boonstra R
    Ecology; 2010 Oct; 91(10):2983-94. PubMed ID: 21058558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climatic amplification of the numerical response of a predator population to its prey.
    Bowler B; Krebs C; O'Donoghue M; Hone J
    Ecology; 2014 May; 95(5):1153-61. PubMed ID: 25000747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Food availability and long-term predation risk interactively affect antipredator response.
    Shiratsuru S; Majchrzak YN; Peers MJL; Studd EK; Menzies AK; Derbyshire R; Humphries MM; Krebs CJ; Murray DL; Boutin S
    Ecology; 2021 Sep; 102(9):e03456. PubMed ID: 34165786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Demographic differences in diet breadth of Canada lynx during a fluctuation in prey availability.
    Burstahler CM; Roth JD; Gau RJ; Murray DL
    Ecol Evol; 2016 Sep; 6(17):6366-75. PubMed ID: 27648249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective Predation of a Stalking Predator on Ungulate Prey.
    Heurich M; Zeis K; Küchenhoff H; Müller J; Belotti E; Bufka L; Woelfing B
    PLoS One; 2016; 11(8):e0158449. PubMed ID: 27548478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Population cycles and changes in body size of the lynx in Alaska.
    Yom-Tov Y; Yom-Tov S; MacDonald D; Yom-Tov E
    Oecologia; 2007 May; 152(2):239-44. PubMed ID: 17277929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of circular single-stranded DNA viruses in faecal samples of Canada lynx (Lynx canadensis), moose (Alces alces) and snowshoe hare (Lepus americanus) inhabiting the Colorado San Juan Mountains.
    Kraberger S; Waits K; Ivan J; Newkirk E; VandeWoude S; Varsani A
    Infect Genet Evol; 2018 Oct; 64():1-8. PubMed ID: 29879480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Of lemmings and snowshoe hares: the ecology of northern Canada.
    Krebs CJ
    Proc Biol Sci; 2011 Feb; 278(1705):481-9. PubMed ID: 20980307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The changing contribution of top-down and bottom-up limitation of mesopredators during 220 years of land use and climate change.
    Pasanen-Mortensen M; Elmhagen B; Lindén H; Bergström R; Wallgren M; van der Velde Y; Cousins SA
    J Anim Ecol; 2017 May; 86(3):566-576. PubMed ID: 28075011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Snow conditions may create an invisible barrier for lynx.
    Stenseth NC; Shabbar A; Chan KS; Boutin S; Rueness EK; Ehrich D; Hurrell JW; Lingjaerde OC; Jakobsen KS
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10632-4. PubMed ID: 15249676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forest fires and the snowshoe hare-Canada lynx cycle.
    Fox JF
    Oecologia; 1978 Jan; 31(3):349-374. PubMed ID: 28309743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonally Varying Predation Behavior and Climate Shifts Are Predicted to Affect Predator-Prey Cycles.
    Tyson R; Lutscher F
    Am Nat; 2016 Nov; 188(5):539-553. PubMed ID: 27788349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unstable dynamics and population limitation in mountain hares.
    Newey S; Dahl F; Willebrand T; Thirgood S
    Biol Rev Camb Philos Soc; 2007 Nov; 82(4):527-49. PubMed ID: 17944616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal strategies and complexity: a theoretical analysis of the anti-predatory behavior of the hare.
    Focardi S; Rizzotto M
    Bull Math Biol; 1999 Sep; 61(5):829-47. PubMed ID: 17886746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climate, season, and social status modulate the functional response of an efficient stalking predator: the Eurasian lynx.
    Nilsen EB; Linnell JD; Odden J; Andersen R
    J Anim Ecol; 2009 Jul; 78(4):741-51. PubMed ID: 19486380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the selection of ordinary differential equation models with application to predator-prey dynamical models.
    Zhang X; Cao J; Carroll RJ
    Biometrics; 2015 Mar; 71(1):131-138. PubMed ID: 25287611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of snow on lynx and coyote movements: does morphology affect behavior?
    Murray DL; Boutin S
    Oecologia; 1991 Dec; 88(4):463-469. PubMed ID: 28312614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.