These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 29846919)

  • 1. Identification of Chemical Inducers of the Phosphate-Starvation Signaling Pathway in A. thaliana Using Chemical Genetics.
    Bonnot C; Nussaume L; Desnos T
    Methods Mol Biol; 2018; 1795():65-84. PubMed ID: 29846919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical genetic screens using Arabidopsis thaliana seedlings grown on solid medium.
    Dinh TT; Chen X
    Methods Mol Biol; 2015; 1263():111-25. PubMed ID: 25618340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Screening of Chemical Compound Libraries for Modulators of Salicylic Acid Signaling by In Situ Monitoring of Glucuronidase-Based Reporter Gene Expression.
    Halder V; Kombrink E
    Methods Mol Biol; 2018; 1795():49-63. PubMed ID: 29846918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana.
    Chen DL; Delatorre CA; Bakker A; Abel S
    Planta; 2000 Jun; 211(1):13-22. PubMed ID: 10923699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Genetics to Uncover Mechanisms Underlying Lipid-Mediated Signaling Events in Plants.
    Khan BR; Chapman KD; Blancaflor EB
    Methods Mol Biol; 2021; 2213():3-16. PubMed ID: 33270188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Seedling-Based Chemical Genetic Screens in Arabidopsis.
    Huang S; Li X
    Methods Mol Biol; 2021; 2213():29-37. PubMed ID: 33270190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proposed role for selective autophagy in regulating auxin-dependent lateral root development under phosphate starvation in Arabidopsis.
    Sankaranarayanan S; Samuel MA
    Plant Signal Behav; 2015; 10(3):e989749. PubMed ID: 25831136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuation of phosphate starvation responses by phosphite in Arabidopsis.
    Ticconi CA; Delatorre CA; Abel S
    Plant Physiol; 2001 Nov; 127(3):963-72. PubMed ID: 11706178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae.
    Rubio V; Linhares F; Solano R; Martín AC; Iglesias J; Leyva A; Paz-Ares J
    Genes Dev; 2001 Aug; 15(16):2122-33. PubMed ID: 11511543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis.
    Ito S; Nozoye T; Sasaki E; Imai M; Shiwa Y; Shibata-Hatta M; Ishige T; Fukui K; Ito K; Nakanishi H; Nishizawa NK; Yajima S; Asami T
    PLoS One; 2015; 10(3):e0119724. PubMed ID: 25793732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR156 modulates rhizosphere acidification in response to phosphate limitation in Arabidopsis.
    Lei KJ; Lin YM; An GY
    J Plant Res; 2016 Mar; 129(2):275-84. PubMed ID: 26659856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite.
    Jost R; Pharmawati M; Lapis-Gaza HR; Rossig C; Berkowitz O; Lambers H; Finnegan PM
    J Exp Bot; 2015 May; 66(9):2501-14. PubMed ID: 25697796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The THO/TREX Complex Active in miRNA Biogenesis Negatively Regulates Root-Associated Acid Phosphatase Activity Induced by Phosphate Starvation.
    Tao S; Zhang Y; Wang X; Xu L; Fang X; Lu ZJ; Liu D
    Plant Physiol; 2016 Aug; 171(4):2841-53. PubMed ID: 27329222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of phosphate transport and signaling in higher plants.
    Wang F; Deng M; Xu J; Zhu X; Mao C
    Semin Cell Dev Biol; 2018 Feb; 74():114-122. PubMed ID: 28648582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk.
    Kobayashi K; Masuda T; Takamiya K; Ohta H
    Plant J; 2006 Jul; 47(2):238-48. PubMed ID: 16762032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation.
    Duan K; Yi K; Dang L; Huang H; Wu W; Wu P
    Plant J; 2008 Jun; 54(6):965-75. PubMed ID: 18315545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical genomics approaches in plant biology.
    Norambuena L; Raikhel NV; Hicks GR
    Methods Mol Biol; 2009; 553():345-54. PubMed ID: 19588115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate starvation responses are mediated by sugar signaling in Arabidopsis.
    Karthikeyan AS; Varadarajan DK; Jain A; Held MA; Carpita NC; Raghothama KG
    Planta; 2007 Mar; 225(4):907-18. PubMed ID: 17033812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis.
    Zimmerli C; Ribot C; Vavasseur A; Bauer H; Hedrich R; Poirier Y
    Plant J; 2012 Oct; 72(2):199-211. PubMed ID: 22612335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.