These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 29847103)
1. Mechanistic Insights into Homogeneous Electrocatalytic and Photocatalytic Hydrogen Evolution Catalyzed by High-Spin Ni(II) Complexes with S Hong D; Tsukakoshi Y; Kotani H; Ishizuka T; Ohkubo K; Shiota Y; Yoshizawa K; Fukuzumi S; Kojima T Inorg Chem; 2018 Jun; 57(12):7180-7190. PubMed ID: 29847103 [TBL] [Abstract][Full Text] [Related]
2. A computational mechanistic investigation of hydrogen production in water using the [Rh(III)(dmbpy)2Cl2](+)/[Ru(II)(bpy)3](2+)/ascorbic acid photocatalytic system. Kayanuma M; Stoll T; Daniel C; Odobel F; Fortage J; Deronzier A; Collomb MN Phys Chem Chem Phys; 2015 Apr; 17(16):10497-509. PubMed ID: 25804803 [TBL] [Abstract][Full Text] [Related]
3. Synthesis, structure, and electrochemical properties of a family of 2-(arylazo)phenolate complexes of ruthenium with unusual C-C coupling and N=N cleavage. Halder S; Acharyya R; Peng SM; Lee GH; Drew MG; Bhattacharya S Inorg Chem; 2006 Nov; 45(24):9654-63. PubMed ID: 17112260 [TBL] [Abstract][Full Text] [Related]
4. Cobalt(II) Pentaaza-Macrocyclic Schiff Base Complex as Catalyst for Light-Driven Hydrogen Evolution in Water: Electrochemical Generation and Theoretical Investigation of the One-Electron Reduced Species. Gueret R; Castillo CE; Rebarz M; Thomas F; Sliwa M; Chauvin J; Dautreppe B; Pécaut J; Fortage J; Collomb MN Inorg Chem; 2019 Jul; 58(14):9043-9056. PubMed ID: 31247812 [TBL] [Abstract][Full Text] [Related]
5. Nickel pyridinethiolate complexes as catalysts for the light-driven production of hydrogen from aqueous solutions in noble-metal-free systems. Han Z; Shen L; Brennessel WW; Holland PL; Eisenberg R J Am Chem Soc; 2013 Oct; 135(39):14659-69. PubMed ID: 24004329 [TBL] [Abstract][Full Text] [Related]
6. Photocatalytic hydrogen evolution using a Ru(ii)-bound heteroaromatic ligand as a reactive site. Sawaki T; Ishizuka T; Namura N; Hong D; Miyanishi M; Shiota Y; Kotani H; Yoshizawa K; Jung J; Fukuzumi S; Kojima T Dalton Trans; 2020 Dec; 49(47):17230-17242. PubMed ID: 33210674 [TBL] [Abstract][Full Text] [Related]
7. Visible-Light-Driven Photocatalytic CO Hong D; Tsukakoshi Y; Kotani H; Ishizuka T; Kojima T J Am Chem Soc; 2017 May; 139(19):6538-6541. PubMed ID: 28453267 [TBL] [Abstract][Full Text] [Related]
8. Cobalt(III) tetraaza-macrocyclic complexes as efficient catalyst for photoinduced hydrogen production in water: Theoretical investigation of the electronic structure of the reduced species and mechanistic insight. Gueret R; Castillo CE; Rebarz M; Thomas F; Hargrove AA; Pécaut J; Sliwa M; Fortage J; Collomb MN J Photochem Photobiol B; 2015 Nov; 152(Pt A):82-94. PubMed ID: 25997378 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Wu LZ; Chen B; Li ZJ; Tung CH Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498 [TBL] [Abstract][Full Text] [Related]
10. Synthesis, Characterization, and Photocatalytic H2-Evolving Activity of a Family of [Co(N4Py)(X)](n+) Complexes in Aqueous Solution. Lo WK; Castillo CE; Gueret R; Fortage J; Rebarz M; Sliwa M; Thomas F; McAdam CJ; Jameson GB; McMorran DA; Crowley JD; Collomb MN; Blackman AG Inorg Chem; 2016 May; 55(9):4564-81. PubMed ID: 27064169 [TBL] [Abstract][Full Text] [Related]
11. A computational study of the mechanism of hydrogen evolution by cobalt(diimine-dioxime) catalysts. Bhattacharjee A; Andreiadis ES; Chavarot-Kerlidou M; Fontecave M; Field MJ; Artero V Chemistry; 2013 Nov; 19(45):15166-74. PubMed ID: 24105795 [TBL] [Abstract][Full Text] [Related]
12. Efficient Photocatalytic CO Hong D; Kawanishi T; Tsukakoshi Y; Kotani H; Ishizuka T; Kojima T J Am Chem Soc; 2019 Dec; 141(51):20309-20317. PubMed ID: 31726829 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic Characterisation of a Bio-Inspired Ni-Based Proton Reduction Catalyst Bearing a Pentadentate N Gotico P; Moonshiram D; Liu C; Zhang X; Guillot R; Quaranta A; Halime Z; Leibl W; Aukauloo A Chemistry; 2020 Mar; 26(13):2859-2868. PubMed ID: 31743487 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical Generation and Spectroscopic Characterization of the Key Rhodium(III) Hydride Intermediates of Rhodium Poly(bipyridyl) H Castillo CE; Stoll T; Sandroni M; Gueret R; Fortage J; Kayanuma M; Daniel C; Odobel F; Deronzier A; Collomb MN Inorg Chem; 2018 Sep; 57(17):11225-11239. PubMed ID: 30129361 [TBL] [Abstract][Full Text] [Related]
16. Large improvement in the catalytic activity due to small changes in the diimine ligands: new mechanistic insight into the dirhodium(II,II) complex-based photocatalytic H2 production. Xie J; Li C; Zhou Q; Wang W; Hou Y; Zhang B; Wang X Inorg Chem; 2012 Jun; 51(11):6376-84. PubMed ID: 22591116 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical Detection of Transient Cobalt Hydride Intermediates of Electrocatalytic Hydrogen Production. Wiedner ES; Bullock RM J Am Chem Soc; 2016 Jul; 138(26):8309-18. PubMed ID: 27300721 [TBL] [Abstract][Full Text] [Related]
19. Combined Spectroscopic and Electrochemical Detection of a Ni(I) ⋅⋅⋅H-N Bonding Interaction with Relevance to Electrocatalytic H2 Production. Kochem A; O'Hagan M; Wiedner ES; van Gastel M Chemistry; 2015 Jul; 21(29):10338-47. PubMed ID: 26041715 [TBL] [Abstract][Full Text] [Related]
20. Cooperative Effects of Heterodinuclear Ir Hong D; Shimoyama Y; Ohgomori Y; Kanega R; Kotani H; Ishizuka T; Kon Y; Himeda Y; Kojima T Inorg Chem; 2020 Sep; 59(17):11976-11985. PubMed ID: 32648749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]