These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 29847103)
21. A Smorgasbord of 17 Cobalt Complexes Active for Photocatalytic Hydrogen Evolution. Hogue RW; Schott O; Hanan GS; Brooker S Chemistry; 2018 Jul; 24(39):9820-9832. PubMed ID: 29671900 [TBL] [Abstract][Full Text] [Related]
22. Photocatalytic reduction of CO Zhu CY; Zhang YQ; Liao RZ; Xia W; Hu JC; Wu J; Liu H; Wang F Dalton Trans; 2018 Oct; 47(37):13142-13150. PubMed ID: 30168831 [TBL] [Abstract][Full Text] [Related]
23. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Bullock RM; Helm ML Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983 [TBL] [Abstract][Full Text] [Related]
24. Electronic and Steric Tuning of Catalytic H Wang P; Liang G; Reddy MR; Long M; Driskill K; Lyons C; Donnadieu B; Bollinger JC; Webster CE; Zhao X J Am Chem Soc; 2018 Jul; 140(29):9219-9229. PubMed ID: 29949370 [TBL] [Abstract][Full Text] [Related]
25. Electrocatalytic Hydrogen Evolution by Cobalt Complexes with a Redox Non-Innocent Polypyridine Ligand. Liu J; Liao RZ; Heinemann FW; Meyer K; Thummel RP; Zhang Y; Tong L Inorg Chem; 2021 Dec; 60(23):17976-17985. PubMed ID: 34808047 [TBL] [Abstract][Full Text] [Related]
26. Light-Driven Proton Reduction in Aqueous Medium Catalyzed by a Family of Cobalt Complexes with Tetradentate Polypyridine-Type Ligands. Tong L; Kopecky A; Zong R; Gagnon KJ; Ahlquist MS; Thummel RP Inorg Chem; 2015 Aug; 54(16):7873-84. PubMed ID: 26213196 [TBL] [Abstract][Full Text] [Related]
27. Divalent Silicon-Assisted Activation of Dihydrogen in a Bis(N-heterocyclic silylene)xanthene Nickel(0) Complex for Efficient Catalytic Hydrogenation of Olefins. Wang Y; Kostenko A; Yao S; Driess M J Am Chem Soc; 2017 Sep; 139(38):13499-13506. PubMed ID: 28856886 [TBL] [Abstract][Full Text] [Related]
28. Electrocatalytic Hydrogen Evolution of Bent Bis(dipyrrin) Ni(II) Complexes. Xue S; Lv X; Liu N; Zhang Q; Lei H; Cao R; Qiu F Inorg Chem; 2023 Jan; 62(4):1679-1685. PubMed ID: 36634365 [TBL] [Abstract][Full Text] [Related]
29. Influence of ligand flexibility on the electronic structure of oxidized Ni(III)-phenoxide complexes. Kawai M; Yamaguchi T; Masaoka S; Tani F; Kohzuma T; Chiang L; Storr T; Mieda K; Ogura T; Szilagyi RK; Shimazaki Y Inorg Chem; 2014 Oct; 53(19):10195-202. PubMed ID: 25254603 [TBL] [Abstract][Full Text] [Related]
30. Deciphering Reversible Homogeneous Catalysis of the Electrochemical H Reuillard B; Costentin C; Artero V Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202302779. PubMed ID: 37073946 [TBL] [Abstract][Full Text] [Related]
31. Sulfur bridging interactions of cis-planar NiII-S2N2 coordination units with nickel(II), copper(I,II), zinc(II), and mercury(II): a library of bridging modes, including NiII(micro2-SR)2MI,II rhombs. Rao PV; Bhaduri S; Jiang J; Holm RH Inorg Chem; 2004 Sep; 43(19):5833-49. PubMed ID: 15360232 [TBL] [Abstract][Full Text] [Related]
32. Photo- and electrocatalytic H2 production by new first-row transition-metal complexes based on an aminopyridine pentadentate ligand. Call A; Codolà Z; Acuña-Parés F; Lloret-Fillol J Chemistry; 2014 May; 20(20):6171-83. PubMed ID: 24692261 [TBL] [Abstract][Full Text] [Related]
33. pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts. Horvath S; Fernandez LE; Appel AM; Hammes-Schiffer S Inorg Chem; 2013 Apr; 52(7):3643-52. PubMed ID: 23477912 [TBL] [Abstract][Full Text] [Related]
34. Ni(II)/H(2)O(2) reactivity in bis[(pyridin-2-yl)methyl]amine tridentate ligand system. aromatic hydroxylation reaction by bis(mu-oxo)dinickel(III) complex. Kunishita A; Doi Y; Kubo M; Ogura T; Sugimoto H; Itoh S Inorg Chem; 2009 Jun; 48(11):4997-5004. PubMed ID: 19374371 [TBL] [Abstract][Full Text] [Related]
35. Size- and shape-dependent activity of metal nanoparticles as hydrogen-evolution catalysts: mechanistic insights into photocatalytic hydrogen evolution. Kotani H; Hanazaki R; Ohkubo K; Yamada Y; Fukuzumi S Chemistry; 2011 Feb; 17(9):2777-85. PubMed ID: 21280108 [TBL] [Abstract][Full Text] [Related]
36. Homogeneous Photocatalytic Water Oxidation with a Dinuclear Co(III)-Pyridylmethylamine Complex. Ishizuka T; Watanabe A; Kotani H; Hong D; Satonaka K; Wada T; Shiota Y; Yoshizawa K; Ohara K; Yamaguchi K; Kato S; Fukuzumi S; Kojima T Inorg Chem; 2016 Feb; 55(3):1154-64. PubMed ID: 26810593 [TBL] [Abstract][Full Text] [Related]
37. Molecular and Electronic Structures of Homoleptic Six-Coordinate Cobalt(I) Complexes of 2,2':6',2″-Terpyridine, 2,2'-Bipyridine, and 1,10-Phenanthroline. An Experimental and Computational Study. England J; Bill E; Weyhermüller T; Neese F; Atanasov M; Wieghardt K Inorg Chem; 2015 Dec; 54(24):12002-18. PubMed ID: 26636830 [TBL] [Abstract][Full Text] [Related]
38. Ligand Controls the Activity of Light-Driven Water Oxidation Catalyzed by Nickel(II) Porphyrin Complexes in Neutral Homogeneous Aqueous Solutions. Liu C; van den Bos D; den Hartog B; van der Meij D; Ramakrishnan A; Bonnet S Angew Chem Int Ed Engl; 2021 Jun; 60(24):13463-13469. PubMed ID: 33768670 [TBL] [Abstract][Full Text] [Related]
39. Visible-Light Photocatalytic Conversion of Carbon Dioxide by Ni(II) Complexes with N4S2 Coordination: Highly Efficient and Selective Production of Formate. Lee SE; Nasirian A; Kim YE; Fard PT; Kim Y; Jeong B; Kim SJ; Baeg JO; Kim J J Am Chem Soc; 2020 Nov; 142(45):19142-19149. PubMed ID: 33074684 [TBL] [Abstract][Full Text] [Related]
40. Electronic structure control of the nucleophilicity of transition metal-thiolate complexes: an experimental and theoretical study. Fox DC; Fiedler AT; Halfen HL; Brunold TC; Halfen JA J Am Chem Soc; 2004 Jun; 126(24):7627-38. PubMed ID: 15198611 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]