BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29847572)

  • 21. Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon.
    Weisz JB; Massaro AJ; Ramsby BD; Hill MS
    Biol Bull; 2010 Dec; 219(3):189-97. PubMed ID: 21183440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Harnessing natural recovery processes to improve restoration outcomes: an experimental assessment of sponge-mediated coral reef restoration.
    Biggs BC
    PLoS One; 2013; 8(6):e64945. PubMed ID: 23750219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid bioerosion in a tropical upwelling coral reef.
    Wizemann A; Nandini SD; Stuhldreier I; Sánchez-Noguera C; Wisshak M; Westphal H; Rixen T; Wild C; Reymond CE
    PLoS One; 2018; 13(9):e0202887. PubMed ID: 30208050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Echinoid bioerosion and herbivory on Kenyan coral reefs: the role of protection from fishing.
    Carreiro-Silva M; McClanahan TR
    J Exp Mar Biol Ecol; 2001 Jul; 262(2):133-153. PubMed ID: 11445084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ocean acidification accelerates reef bioerosion.
    Wisshak M; Schönberg CH; Form A; Freiwald A
    PLoS One; 2012; 7(9):e45124. PubMed ID: 23028797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep-water sponges (Porifera) from Bonaire and Klein Curaçao, Southern Caribbean.
    Van Soest RW; Meesters EH; Becking LE
    Zootaxa; 2014 Oct; 3878(5):401-43. PubMed ID: 25544454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogenetic relationships among the Caribbean members of the Cliona viridis complex (Porifera, Demospongiae, Hadromerida) using nuclear and mitochondrial DNA sequences.
    Escobar D; Zea S; Sánchez JA
    Mol Phylogenet Evol; 2012 Aug; 64(2):271-84. PubMed ID: 22510309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymmetric competition prevents the outbreak of an opportunistic species after coral reef degradation.
    González-Rivero M; Bozec YM; Chollett I; Ferrari R; Schönberg CH; Mumby PJ
    Oecologia; 2016 May; 181(1):161-73. PubMed ID: 26753672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-cell measurement of ammonium and bicarbonate uptake within a photosymbiotic bioeroding sponge.
    Achlatis M; Pernice M; Green K; Guagliardo P; Kilburn MR; Hoegh-Guldberg O; Dove S
    ISME J; 2018 May; 12(5):1308-1318. PubMed ID: 29386628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs.
    Ward-Paige CA; Risk MJ; Sherwood OA; Jaap WC
    Mar Pollut Bull; 2005; 51(5-7):570-9. PubMed ID: 15946702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental drivers of coral reef carbonate production and bioerosion: a multi-scale analysis.
    Silbiger NJ; Donahue MJ; Brainard RE
    Ecology; 2017 Oct; 98(10):2547-2560. PubMed ID: 28707327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up.
    Pawlik JR; Loh TL; McMurray SE; Finelli CM
    PLoS One; 2013; 8(5):e62573. PubMed ID: 23667492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.
    Rix L; de Goeij JM; Mueller CE; Struck U; Middelburg JJ; van Duyl FC; Al-Horani FA; Wild C; Naumann MS; van Oevelen D
    Sci Rep; 2016 Jan; 6():18715. PubMed ID: 26740019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clionapyrrolidine A--a metabolite from the encrusting and excavating sponge Cliona tenuis that kills coral tissue upon contact.
    Chaves-Fonnegra A; Castellanos L; Zea S; Duque C; Rodríguez J; Jiménez C
    J Chem Ecol; 2008 Dec; 34(12):1565-74. PubMed ID: 19023625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reef flattening effects on total richness and species responses in the Caribbean.
    Newman SP; Meesters EH; Dryden CS; Williams SM; Sanchez C; Mumby PJ; Polunin NV
    J Anim Ecol; 2015 Nov; 84(6):1678-89. PubMed ID: 26344713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An update on the diversity of marine sponges in the southern gulf of Mexico coral reefs.
    Ugalde D; Fernandez JCC; Gmez P; Lbo-Hajdu G; Simes N
    Zootaxa; 2021 Sep; 5031(1):1-112. PubMed ID: 34811146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Could some coral reefs become sponge reefs as our climate changes?
    Bell JJ; Davy SK; Jones T; Taylor MW; Webster NS
    Glob Chang Biol; 2013 Sep; 19(9):2613-24. PubMed ID: 23553821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 'Ten Years After'-a long-term settlement and bioerosion experiment in an Arctic rhodolith bed (Mosselbukta, Svalbard).
    Wisshak M; Meyer N; Kuklinski P; Rüggeberg A; Freiwald A
    Geobiology; 2022 Jan; 20(1):112-136. PubMed ID: 34523213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth.
    Perry CT; Steneck RS; Murphy GN; Kench PS; Edinger EN; Smithers SG; Mumby PJ
    Glob Chang Biol; 2015 Mar; 21(3):1153-64. PubMed ID: 25537577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bottom-up and top-down controls on coral reef sponges: disentangling within-habitat and between-habitat processes.
    Wulff J
    Ecology; 2017 Apr; 98(4):1130-1139. PubMed ID: 28130801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.