These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29847723)

  • 1. Assessing Gaussian Process Regression and Permutationally Invariant Polynomial Approaches To Represent High-Dimensional Potential Energy Surfaces.
    Qu C; Yu Q; Van Hoozen BL; Bowman JM; Vargas-Hernández RA
    J Chem Theory Comput; 2018 Jul; 14(7):3381-3396. PubMed ID: 29847723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full and fragmented permutationally invariant polynomial potential energy surfaces for trans and cis N-methyl acetamide and isomerization saddle points.
    Nandi A; Qu C; Bowman JM
    J Chem Phys; 2019 Aug; 151(8):084306. PubMed ID: 31470729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system.
    Li J; Guo H
    J Chem Phys; 2015 Dec; 143(21):214304. PubMed ID: 26646879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permutationally invariant polynomial regression for energies and gradients, using reverse differentiation, achieves orders of magnitude speed-up with high precision compared to other machine learning methods.
    Houston PL; Qu C; Nandi A; Conte R; Yu Q; Bowman JM
    J Chem Phys; 2022 Jan; 156(4):044120. PubMed ID: 35105104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory.
    Nandi A; Qu C; Houston PL; Conte R; Bowman JM
    J Chem Phys; 2021 Feb; 154(5):051102. PubMed ID: 33557535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fragmented, permutationally invariant polynomial approach for potential energy surfaces of large molecules: Application to N-methyl acetamide.
    Qu C; Bowman JM
    J Chem Phys; 2019 Apr; 150(14):141101. PubMed ID: 30981221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global and Full-Dimensional Potential Energy Surfaces of the N
    Tao C; Yang J; Hong Q; Sun Q; Li J
    J Phys Chem A; 2023 May; 127(18):4027-4042. PubMed ID: 37128765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Many-Body Permutationally Invariant Polynomial Neural Network Potential Energy Surface for N
    Li J; Varga Z; Truhlar DG; Guo H
    J Chem Theory Comput; 2020 Aug; 16(8):4822-4832. PubMed ID: 32610014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permutationally invariant polynomial potential energy surfaces for tropolone and H and D atom tunneling dynamics.
    Houston P; Conte R; Qu C; Bowman JM
    J Chem Phys; 2020 Jul; 153(2):024107. PubMed ID: 32668941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems.
    Li J; Jiang B; Guo H
    J Chem Phys; 2013 Nov; 139(20):204103. PubMed ID: 24289340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permutationally Invariant Potential Energy Surfaces.
    Qu C; Yu Q; Bowman JM
    Annu Rev Phys Chem; 2018 Apr; 69():151-175. PubMed ID: 29401038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Generation of Permutationally Invariant Potential Energy Surfaces for Large Molecules.
    Conte R; Qu C; Houston PL; Bowman JM
    J Chem Theory Comput; 2020 May; 16(5):3264-3272. PubMed ID: 32212729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions.
    Jiang B; Guo H
    J Chem Phys; 2014 Jul; 141(3):034109. PubMed ID: 25053303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automating the Development of High-Dimensional Reactive Potential Energy Surfaces with the robosurfer Program System.
    Győri T; Czakó G
    J Chem Theory Comput; 2020 Jan; 16(1):51-66. PubMed ID: 31851508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential energy surfaces for high-energy N + O
    Varga Z; Liu Y; Li J; Paukku Y; Guo H; Truhlar DG
    J Chem Phys; 2021 Feb; 154(8):084304. PubMed ID: 33639765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Gradients in Permutationally Invariant Polynomial Potential Fitting: A Demonstration for CH
    Nandi A; Qu C; Bowman JM
    J Chem Theory Comput; 2019 May; 15(5):2826-2835. PubMed ID: 30896950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From ab initio data to high-dimensional potential energy surfaces: A critical overview and assessment of the development of permutationally invariant polynomial potential energy surfaces for single molecules.
    Brown SE
    J Chem Phys; 2019 Nov; 151(19):194111. PubMed ID: 31757150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permutationally Invariant Polynomial Basis for Molecular Energy Surface Fitting via Monomial Symmetrization.
    Xie Z; Bowman JM
    J Chem Theory Comput; 2010 Jan; 6(1):26-34. PubMed ID: 26614316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An accurate full-dimensional permutationally invariant potential energy surface for the interaction between H
    Liu Y; Li J
    Phys Chem Chem Phys; 2019 Nov; 21(43):24101-24111. PubMed ID: 31657386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl.
    Sharma AR; Braams BJ; Carter S; Shepler BC; Bowman JM
    J Chem Phys; 2009 May; 130(17):174301. PubMed ID: 19425770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.