BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 29848309)

  • 1. Next-generation sequencing library construction on a surface.
    Feng K; Costa J; Edwards JS
    BMC Genomics; 2018 May; 19(1):416. PubMed ID: 29848309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Low-Cost NGS Library Preparation Using a Robust Tn5 Purification and Tagmentation Protocol.
    Hennig BP; Velten L; Racke I; Tu CS; Thoms M; Rybin V; Besir H; Remans K; Steinmetz LM
    G3 (Bethesda); 2018 Jan; 8(1):79-89. PubMed ID: 29118030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tn5 Transposase Applied in Genomics Research.
    Li N; Jin K; Bai Y; Fu H; Liu L; Liu B
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33172005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Library preparation methods for next-generation sequencing: tone down the bias.
    van Dijk EL; Jaszczyszyn Y; Thermes C
    Exp Cell Res; 2014 Mar; 322(1):12-20. PubMed ID: 24440557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent amplification for next generation sequencing (FA-NGS) library preparation.
    Chiniquy J; Garber ME; Mukhopadhyay A; Hillson NJ
    BMC Genomics; 2020 Jan; 21(1):85. PubMed ID: 31992180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money.
    Vincent AT; Derome N; Boyle B; Culley AI; Charette SJ
    J Microbiol Methods; 2017 Jul; 138():60-71. PubMed ID: 26995332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cost, High-Throughput Sequencing of DNA Assemblies Using a Highly Multiplexed Nextera Process.
    Shapland EB; Holmes V; Reeves CD; Sorokin E; Durot M; Platt D; Allen C; Dean J; Serber Z; Newman J; Chandran S
    ACS Synth Biol; 2015 Jul; 4(7):860-6. PubMed ID: 25913499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects.
    Picelli S; Björklund AK; Reinius B; Sagasser S; Winberg G; Sandberg R
    Genome Res; 2014 Dec; 24(12):2033-40. PubMed ID: 25079858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AG-NGS: a powerful and user-friendly computing application for the semi-automated preparation of next-generation sequencing libraries using open liquid handling platforms.
    Callejas S; Álvarez R; Benguria A; Dopazo A
    Biotechniques; 2014 Jan; 56(1):28-35. PubMed ID: 24447136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Sub-nanomolar Library Preparation for High Throughput Next Generation Sequencing.
    Wu WW; Phue JN; Lee CT; Lin C; Xu L; Wang R; Zhang Y; Shen RF
    BMC Genomics; 2018 May; 19(1):326. PubMed ID: 29728062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitation of next generation sequencing library preparation protocol efficiencies using droplet digital PCR assays - a systematic comparison of DNA library preparation kits for Illumina sequencing.
    Aigrain L; Gu Y; Quail MA
    BMC Genomics; 2016 Jun; 17():458. PubMed ID: 27297323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Library construction for next-generation sequencing: overviews and challenges.
    Head SR; Komori HK; LaMere SA; Whisenant T; Van Nieuwerburgh F; Salomon DR; Ordoukhanian P
    Biotechniques; 2014; 56(2):61-4, 66, 68, passim. PubMed ID: 24502796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplification-free library preparation for paired-end Illumina sequencing.
    Kozarewa I; Turner DJ
    Methods Mol Biol; 2011; 733():257-66. PubMed ID: 21431776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization and cost-saving in tagmentation-based mate-pair library preparation and sequencing.
    Tatsumi K; Nishimura O; Itomi K; Tanegashima C; Kuraku S
    Biotechniques; 2015 May; 58(5):253-7. PubMed ID: 25967904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Multiplexed, Semiautomated Nextera Next-Generation Sequencing (NGS) Library Preparation.
    Christie W; Yadin R; Ip K; George KW
    Methods Mol Biol; 2020; 2205():91-104. PubMed ID: 32809195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of enzymatic fragmentation is crucial to maximize genome coverage: a comparison of library preparation methods for Illumina sequencing.
    Ribarska T; Bjørnstad PM; Sundaram AYM; Gilfillan GD
    BMC Genomics; 2022 Feb; 23(1):92. PubMed ID: 35105301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next-generation sequencing fragment library construction.
    Podnar J; Deiderick H; Hunicke-Smith S
    Curr Protoc Mol Biol; 2014 Jul; 107():7.17.1-7.17.16. PubMed ID: 24984855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of normalized cDNA libraries for 454 Titanium transcriptome sequencing.
    Lai Z; Zou Y; Kane NC; Choi JH; Wang X; Rieseberg LH
    Methods Mol Biol; 2012; 888():119-33. PubMed ID: 22665279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.
    Oyola SO; Otto TD; Gu Y; Maslen G; Manske M; Campino S; Turner DJ; Macinnis B; Kwiatkowski DP; Swerdlow HP; Quail MA
    BMC Genomics; 2012 Jan; 13():1. PubMed ID: 22214261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved genome sequencing using an engineered transposase.
    Kia A; Gloeckner C; Osothprarop T; Gormley N; Bomati E; Stephenson M; Goryshin I; He MM
    BMC Biotechnol; 2017 Jan; 17(1):6. PubMed ID: 28095828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.