These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29848336)

  • 1. Identification of reaction organization patterns that naturally cluster enzymatic transformations.
    Vazquez-Hernandez C; Loza A; Peguero-Sanchez E; Segovia L; Gutierrez-Rios RM
    BMC Syst Biol; 2018 May; 12(1):63. PubMed ID: 29848336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactant pairs and reaction organization patterns produced by a new rule-based approach.
    Vazquez-Hernandez C; Loza A; Gutierrez-Rios RM
    BMC Res Notes; 2018 Aug; 11(1):608. PubMed ID: 30143048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PathPred: an enzyme-catalyzed metabolic pathway prediction server.
    Moriya Y; Shigemizu D; Hattori M; Tokimatsu T; Kotera M; Goto S; Kanehisa M
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W138-43. PubMed ID: 20435670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways.
    Oh M; Yamada T; Hattori M; Goto S; Kanehisa M
    J Chem Inf Model; 2007; 47(4):1702-12. PubMed ID: 17516640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic pathfinding using RPAIR annotation.
    Faust K; Croes D; van Helden J
    J Mol Biol; 2009 May; 388(2):390-414. PubMed ID: 19281817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.
    Hadadi N; Hafner J; Soh KC; Hatzimanikatis V
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27897385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of chemical reactions and chemoinformatic processing of enzymatic transformations.
    Latino DA; Aires-de-Sousa J
    Methods Mol Biol; 2011; 672():325-40. PubMed ID: 20838975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling.
    Huthmacher C; Gille C; Holzhütter HG
    J Theor Biol; 2008 Jun; 252(3):456-64. PubMed ID: 17988690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curating a comprehensive set of enzymatic reaction rules for efficient novel biosynthetic pathway design.
    Ni Z; Stine AE; Tyo KEJ; Broadbelt LJ
    Metab Eng; 2021 May; 65():79-87. PubMed ID: 33662575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions.
    Kotera M; Okuno Y; Hattori M; Goto S; Kanehisa M
    J Am Chem Soc; 2004 Dec; 126(50):16487-98. PubMed ID: 15600352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and genomic evolution of enzyme-catalyzed reaction networks.
    Kanehisa M
    FEBS Lett; 2013 Sep; 587(17):2731-7. PubMed ID: 23816707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atom Identifiers Generated by a Neighborhood-Specific Graph Coloring Method Enable Compound Harmonization across Metabolic Databases.
    Jin H; Mitchell JM; Moseley HNB
    Metabolites; 2020 Sep; 10(9):. PubMed ID: 32933023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets.
    Kotera M; Tabei Y; Yamanishi Y; Tokimatsu T; Goto S
    Bioinformatics; 2013 Jul; 29(13):i135-44. PubMed ID: 23812977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FindPrimaryPairs: An efficient algorithm for predicting element-transferring reactant/product pairs in metabolic networks.
    Steffensen JL; Dufault-Thompson K; Zhang Y
    PLoS One; 2018; 13(2):e0192891. PubMed ID: 29447218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models for identification of erroneous atom-to-atom mapping of reactions performed by automated algorithms.
    Muller C; Marcou G; Horvath D; Aires-de-Sousa J; Varnek A
    J Chem Inf Model; 2012 Dec; 52(12):3116-22. PubMed ID: 23167287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient algorithm for de novo predictions of biochemical pathways between chemical compounds.
    Nakamura M; Hachiya T; Saito Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S8. PubMed ID: 23282285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting novel metabolic pathways through subgraph mining.
    Sankar A; Ranu S; Raman K
    Bioinformatics; 2017 Dec; 33(24):3955-3963. PubMed ID: 28961716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracing metabolic pathways from enzyme data.
    McDonald AG; Tipton KF; Boyce S
    Biochim Biophys Acta; 2009 Sep; 1794(9):1364-71. PubMed ID: 19563919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of metabolic reactions based on atomic and molecular properties of small-molecule compounds.
    Mu F; Unkefer CJ; Unkefer PJ; Hlavacek WS
    Bioinformatics; 2011 Jun; 27(11):1537-45. PubMed ID: 21478194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal scaling across biochemical networks on Earth.
    Kim H; Smith HB; Mathis C; Raymond J; Walker SI
    Sci Adv; 2019 Jan; 5(1):eaau0149. PubMed ID: 30746442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.