BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29848336)

  • 1. Identification of reaction organization patterns that naturally cluster enzymatic transformations.
    Vazquez-Hernandez C; Loza A; Peguero-Sanchez E; Segovia L; Gutierrez-Rios RM
    BMC Syst Biol; 2018 May; 12(1):63. PubMed ID: 29848336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactant pairs and reaction organization patterns produced by a new rule-based approach.
    Vazquez-Hernandez C; Loza A; Gutierrez-Rios RM
    BMC Res Notes; 2018 Aug; 11(1):608. PubMed ID: 30143048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PathPred: an enzyme-catalyzed metabolic pathway prediction server.
    Moriya Y; Shigemizu D; Hattori M; Tokimatsu T; Kotera M; Goto S; Kanehisa M
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W138-43. PubMed ID: 20435670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways.
    Oh M; Yamada T; Hattori M; Goto S; Kanehisa M
    J Chem Inf Model; 2007; 47(4):1702-12. PubMed ID: 17516640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic pathfinding using RPAIR annotation.
    Faust K; Croes D; van Helden J
    J Mol Biol; 2009 May; 388(2):390-414. PubMed ID: 19281817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.
    Hadadi N; Hafner J; Soh KC; Hatzimanikatis V
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27897385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of chemical reactions and chemoinformatic processing of enzymatic transformations.
    Latino DA; Aires-de-Sousa J
    Methods Mol Biol; 2011; 672():325-40. PubMed ID: 20838975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling.
    Huthmacher C; Gille C; Holzhütter HG
    J Theor Biol; 2008 Jun; 252(3):456-64. PubMed ID: 17988690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curating a comprehensive set of enzymatic reaction rules for efficient novel biosynthetic pathway design.
    Ni Z; Stine AE; Tyo KEJ; Broadbelt LJ
    Metab Eng; 2021 May; 65():79-87. PubMed ID: 33662575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions.
    Kotera M; Okuno Y; Hattori M; Goto S; Kanehisa M
    J Am Chem Soc; 2004 Dec; 126(50):16487-98. PubMed ID: 15600352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and genomic evolution of enzyme-catalyzed reaction networks.
    Kanehisa M
    FEBS Lett; 2013 Sep; 587(17):2731-7. PubMed ID: 23816707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atom Identifiers Generated by a Neighborhood-Specific Graph Coloring Method Enable Compound Harmonization across Metabolic Databases.
    Jin H; Mitchell JM; Moseley HNB
    Metabolites; 2020 Sep; 10(9):. PubMed ID: 32933023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets.
    Kotera M; Tabei Y; Yamanishi Y; Tokimatsu T; Goto S
    Bioinformatics; 2013 Jul; 29(13):i135-44. PubMed ID: 23812977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FindPrimaryPairs: An efficient algorithm for predicting element-transferring reactant/product pairs in metabolic networks.
    Steffensen JL; Dufault-Thompson K; Zhang Y
    PLoS One; 2018; 13(2):e0192891. PubMed ID: 29447218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models for identification of erroneous atom-to-atom mapping of reactions performed by automated algorithms.
    Muller C; Marcou G; Horvath D; Aires-de-Sousa J; Varnek A
    J Chem Inf Model; 2012 Dec; 52(12):3116-22. PubMed ID: 23167287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient algorithm for de novo predictions of biochemical pathways between chemical compounds.
    Nakamura M; Hachiya T; Saito Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S8. PubMed ID: 23282285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting novel metabolic pathways through subgraph mining.
    Sankar A; Ranu S; Raman K
    Bioinformatics; 2017 Dec; 33(24):3955-3963. PubMed ID: 28961716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracing metabolic pathways from enzyme data.
    McDonald AG; Tipton KF; Boyce S
    Biochim Biophys Acta; 2009 Sep; 1794(9):1364-71. PubMed ID: 19563919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of metabolic reactions based on atomic and molecular properties of small-molecule compounds.
    Mu F; Unkefer CJ; Unkefer PJ; Hlavacek WS
    Bioinformatics; 2011 Jun; 27(11):1537-45. PubMed ID: 21478194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal scaling across biochemical networks on Earth.
    Kim H; Smith HB; Mathis C; Raymond J; Walker SI
    Sci Adv; 2019 Jan; 5(1):eaau0149. PubMed ID: 30746442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.