These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 29848800)

  • 1. Effect of topological patterning on self-rolling of nanomembranes.
    Chen C; Song P; Meng F; Ou P; Liu X; Song J
    Nanotechnology; 2018 Aug; 29(34):345301. PubMed ID: 29848800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis and predictive engineering of self-rolling of nanomembranes under anisotropic mismatch strain.
    Chen C; Song P; Meng F; Li X; Liu X; Song J
    Nanotechnology; 2017 Dec; 28(48):485302. PubMed ID: 29048333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic Rolling and Controlled Chirality of Nanocrystalline Diamond Nanomembranes toward Biomimetic Helical Frameworks.
    Tian Z; Huang W; Xu B; Li X; Mei Y
    Nano Lett; 2018 Jun; 18(6):3688-3694. PubMed ID: 29799209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomechanical architecture of semiconductor nanomembranes.
    Huang M; Cavallo F; Liu F; Lagally MG
    Nanoscale; 2011 Jan; 3(1):96-120. PubMed ID: 21031195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grating-structured metallic microsprings.
    Huang T; Liu Z; Huang G; Liu R; Mei Y
    Nanoscale; 2014 Aug; 6(16):9428-35. PubMed ID: 24728100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional roll-up of nanomembranes mediated by wrinkling.
    Cendula P; Kiravittaya S; Mönch I; Schumann J; Schmidt OG
    Nano Lett; 2011 Jan; 11(1):236-40. PubMed ID: 21117702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling.
    Huang W; Koric S; Yu X; Hsia KJ; Li X
    Nano Lett; 2014 Nov; 14(11):6293-7. PubMed ID: 25300010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wide-angle infrared photodetectors.
    Wang H; Zhen H; Li S; Jing Y; Huang G; Mei Y; Lu W
    Sci Adv; 2016 Aug; 2(8):e1600027. PubMed ID: 27536723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swiss roll nanomembranes with controlled proton diffusion as redox micro-supercapacitors.
    Ji H; Mei Y; Schmidt OG
    Chem Commun (Camb); 2010 Jun; 46(22):3881-3. PubMed ID: 20449515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal-controlled releasing and assembling of functional nanomembranes through polymer pyrolysis.
    Ma F; Xu B; Wu S; Wang L; Zhang B; Huang G; Du A; Zhou B; Mei Y
    Nanotechnology; 2019 Aug; 30(35):354001. PubMed ID: 31035266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomembrane-assembled nanophotonics and optoelectronics: from materials to applications.
    Huang J; Huang G; Zhao Z; Wang C; Cui J; Song E; Mei Y
    J Phys Condens Matter; 2022 Dec; 35(9):. PubMed ID: 36560918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuum-induced wrinkle arrays of InGaAs semiconductor nanomembranes on polydimethylsiloxane microwell arrays.
    Um DS; Lim S; Lee Y; Lee H; Kim HJ; Yen WC; Chueh YL; Ko H
    ACS Nano; 2014 Mar; 8(3):3080-7. PubMed ID: 24547699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concealing surface topography by attachment of nanometer-thick film.
    Watanabe H; Fujimoto A; Takahara A
    Langmuir; 2013 Mar; 29(9):2906-11. PubMed ID: 23360147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Straining nanomembranes via highly mismatched heteroepitaxial growth: InAs islands on compliant Si substrates.
    Deneke C; Malachias A; Rastelli A; Merces L; Huang M; Cavallo F; Schmidt OG; Lagally MG
    ACS Nano; 2012 Nov; 6(11):10287-95. PubMed ID: 23046451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic Self-Rolling of Ultrathin Nanocrystalline Diamond Nanomembranes for 3D Tubular/Helical Architecture.
    Tian Z; Zhang L; Fang Y; Xu B; Tang S; Hu N; An Z; Chen Z; Mei Y
    Adv Mater; 2017 Apr; 29(13):. PubMed ID: 28165163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phase field crystal study of epitaxial island formation on nanomembranes.
    Elder KR; Huang ZF
    J Phys Condens Matter; 2010 Sep; 22(36):364103. PubMed ID: 21386519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetry in strain engineering of nanomembranes: making new strained materials.
    Paskiewicz DM; Scott SA; Savage DE; Celler GK; Lagally MG
    ACS Nano; 2011 Jul; 5(7):5532-42. PubMed ID: 21682324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D hierarchical architectures based on self-rolled-up silicon nitride membranes.
    Froeter P; Yu X; Huang W; Du F; Li M; Chun I; Kim SH; Hsia KJ; Rogers JA; Li X
    Nanotechnology; 2013 Nov; 24(47):475301. PubMed ID: 24177590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application.
    Lee JA; Shin MK; Kim SH; Kim SJ; Spinks GM; Wallace GG; Ovalle-Robles R; Lima MD; Kozlov ME; Baughman RH
    ACS Nano; 2012 Jan; 6(1):327-34. PubMed ID: 22168757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometry effect on the strain-induced self-rolling of semiconductor membranes.
    Chun IS; Challa A; Derickson B; Hsia KJ; Li X
    Nano Lett; 2010 Oct; 10(10):3927-32. PubMed ID: 20825204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.